跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 04:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭彥成
研究生(外文):Kuo, Yen-Chen
論文名稱:與14奈米鰭式電晶體CMOS邏輯製程相容的電阻式快閃記憶體設計
論文名稱(外文):The Design of a Resistance Flash Memory on a Pure CMOS Logic Compatible 14 nm FinFET Platform
指導教授:劉傳璽劉傳璽引用關係莊紹勳
指導教授(外文):Liu, Chuan-Hsi
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:57
中文關鍵詞:電阻式記憶體嵌入式記憶體漏電路徑干擾免疫
外文關鍵詞:RRAMembedded memorysneak pathinterference immunity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:591
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
傳統非揮發性記憶體如SONOS( Silicon-Oxide-Nitride-Oxide-Silicon )等的快閃記憶體有操作電壓高、隨機摻雜擾動( random dopant fluctuation )、穿隧氧化層厚度造成的漏電( charge loss )、隨機電報雜訊 (random telegraph noise )、寫抹不匹配( mismatch between program and erase )等先天微縮的限制,使嵌入式記憶體整合困難,學術界與產業界,無不投入大量資源,尋找下一世代的新興記憶體。

電阻式記憶體( Resistive Random Access Memory, RRAM )成為非揮發性記憶體的熱門研究方向,低功耗、低成本、易整合於後段製程與邏輯電路中,成為電阻式記憶體的優勢,並且因簡單的堆疊結構即可完成,甚至可有零光罩與現有邏輯CMOS製程整合的便利性,其潛力可見一斑。

另一方面,電阻式記憶體依操作方式又可分為單極性電阻式記憶體以及雙極性電阻式記憶體,不同的機制發生取決於上下電極的材料與介電層的材料,在本論文中的雙極性電阻式記憶體主要是價電轉換機制的類型,發生於14奈米鰭式電晶體之介電層,使用的上電極材料是TiN,介電層是使用高介電系數的二氧化鉿為基底之電阻式記憶體,下電極則是高濃度的半導體材料,形成一個特殊的金屬-氧化物-半導體( MIS ) 電阻式記憶體結構。

本論文成功的以閘極堆疊電阻式記憶體整合於14奈米鰭式電晶體之純CMOS ( Complementary Metal-Oxide-Semiconductor )邏輯製程平台,建構嵌入式記憶體。我們分別探討在n型電晶體與p型電晶體上RRAM的差異性;結果顯示本實驗可以在絕對值小於3V的電壓操作,電流的需求也小於1mA,在瞬時脈衝的操作下,僅需100 ns的時間即可轉態,另外在可靠度的測試中,pFinFET RRAM之高低組態差異( on/off ratio )也可以達到1000倍,並具有持續操作400次以上的耐久度( endurance ),nFinFET RRAM則可以維持至少150倍的記憶窗口,並持續1000次的操作耐久度,兩者也都可以在125℃的環境溫度下,保持一個月的穩定阻值。另外,我們針對干擾免疫( disturb immunity )做量測分析,控制電晶體也僅有些微的臨界電壓飄移。我們也將串聯電晶體作為限流,展示了記憶體具有多位元單胞的能力,使其有兩個位元( 2 bits )於同一個記憶胞中。

在陣列架構的討論上,我們設計一種新的架構,以主動鰭式電晶體阻隔( Active Fin Isolation, AFI )做為兩個儲存單元間的阻擋元件,搭配開關電晶體與記憶胞串聯( 1T1R ),取代傳統的交錯式陣列( crossbar array ),除了用電晶體來限制讀寫電流外,更有效的抑制溜徑電流( sneak current ),量測結果顯示新型陣列抑制了30%的電路預備功耗與接近99%的操作功耗,最後是電路干擾測試,結果顯示僅有些微的臨界電壓改變及電阻值的變化,而這些差異是幾乎可以忽略的。上述的實驗與模擬結果顯示本文提出的雙極性嵌入電阻式記憶體在先進製程嵌入式記憶體領域有極大的發展潛力。
Traditional nonvolatile memory, such as SONOS Flash has disadvantages of high operating voltage, random dopant fluctuation, tunneling oxide induced leakage, random telegraph noise, and the other scaling limitation. These shortcomings make integration difficult, so, numerous efforts have been made on looking for future generation emerging memory.

On the other hand, Resistive Random Access Memory ( RRAM ) has an advantage of low power consumption, easy integration in the BEOL ( Back End of Line ) and logic circuit. Because of a simple stacked structure can be completed, or even zero mask integration possible, RRAM has a great potential for better embedded memory applications.

RRAM is divided into two categories according to operation type: unipolar RRAM and bipolar RRAM. Different mechanisms occur depending on the material of the upper and lower electrodes and the material of the dielectric layer. The bipolar RRAM is used in our work. In this paper, the composition of the RRAM used in this study consists of a TiN top electrode and a transition metal oxide layer, and a highly doped semiconductor source region of FinFET, with an underlap underneath the spacer.

In this work, we have demonstrated an oxygen-vacancy-based bipolar RRAM on a pure logic 14nm-node HKMG FinFET CMOS platform. The result has shown that RRAM can have low operation voltage ( <3V ) and program within 100ns, also the demand for the maximum current is lower than 1mA. The reliability results have shown more than 400-time cycling for the endurance test and more than 1000-time window has been maintained for the retention test in the pFinFET RRAM. For the nFinFET RRAM, the reliability results have shown more than 1000-time cycling for the endurance test and more than 150-time window has been maintained for the retention test.

On the design of an RRAM memory array architecture, we used “active fin isolation” as a selector between two storage units. The transistor plays the role of switch, we put the switch and storage unit in series to replace the traditional crossbar architecture. In addition to using the transistor to limit the read and write current, sneak current can be suppressed efficiently. The simulation result shows that the new architecture can reduce a huge amount of power consumption and standby power. Especially, 30% and 99% reduction of the standby and active power have been also achieved, which shows the effective usage of the active-fin-isolation ( AFI ) in the FinFET RRAM array. Eventually, the disturbances of FinFET RRAM array during operation have also been investigated. The AFI and periphery RRAM close to the selected cell have been un-disturbed during the test. The selected control transistor has shown slightly increase of Vth shift, but this few increment will not hurt the driving capability for a control transistor to program the RRAM. These experimental and simulated results offer strong and solid results to elaborate the potential opportunities of the bipolar FinFET RRAM for embedded memories, especially for advanced CMOS technology node beyond 20nm.
第一章 緒論 1
1.1 研究動機與方向 1
1.2 本論文研究架構 2

第二章 文獻探討 3
2.1 金氧半場效電晶體 4
2.1.1 摩爾定律 4
2.1.2 電晶體之結構 6
2.1.3 輸出特性 8
2.1.4 轉移特性 11
2.1.5 次臨界特性 14
2.2 傳統非揮發性記憶體 15
2.2.1 快閃記憶體 15
2.2.2 快閃記憶體面臨之困境 16
2.3 電阻式記憶體 17
2.3.1 RRAM結構與操作機制 18
2.3.2 RRAM物理機制及原理 19
2.3.3 記憶體陣列結構 20

第三章 實驗與研究方法 22
3.1 元件製備 22
3.2 實驗設備 23
3.3 實驗原理 25
3.3.1 直流分析 25
3.3.2 脈衝瞬變分析 26
3.3.3 取樣分析 27
3.3.4 HSPICE模擬分析 27

第四章 結果與討論 29
4.1 嵌入式雙極性RRAM特性 29
4.1.1 直流分析 30
4.1.2 脈衝分析 32
4.1.3 耐久度與資料保存特性分析 34
4.2 記憶體陣列設計與模擬與干擾分析 36
4.2.1 1T1R架構與特性分析 36
4.2.2 溜徑電流討論與改善 38
4.2.3 讀寫干擾分析 46

第五章 結論與未來展望 51
5.1 結論 51
5.2 未來展望 52
參考文獻 53
[1-1] T. Endoh, H. Koike, S. Ikeda, T. Hanyu, and H. Ohno, "An overview of nonvolatile emerging memories spintronics for Working Memories," IEEE JETCAS, vol. 6, pp. 109-119, 2016.
[1-2] S. Yu, "Overview of resistive switching memory (RRAM) switching mechanism and device modeling," IEEE ISCAS, pp. 2017-2020, 2014.
[2-1] D. Stroobandt, "Interconnect research influenced", IEEE Solid-State Circuits Magazine, vol. 2, pp. 21-27, 2010.
[2-2] 工研院產業經濟與趨勢研究中心及資策會資訊市場情報中心,2015 年台灣重要產業技術發展藍圖I,工研院IEK,2008。
[2-3] 劉傳璽,陳進來,第三版,半導體物理元件與製程-理論與實務,五南文化出版社,2006。
[2-4] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices,” Bell Syst. Tech. J., vol. 46, pp. 1288-1295, 1967.
[2-5] X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen, “Circuit and
microarchitecture evaluation of 3D stacking magnetic RAM (MRAM) as a universal memory replacement,” in Proc. IEEE Des. Autom. Conf., pp. 554-559, 2008.
[2-6] S. Lin, Y. Kim, and F. Lombardi, “Design of a CNTFET-based SRAM cell by dual-chirality selection,” IEEE Trans. Nanotechnology, vol. 9, pp. 30-37, 2010.
[2-7] Y. Ye, F. Liu, and M. Chen, “Statistical modeling and simulation of
threshold variation under random dopant fluctuations and line-edge roughness,” IEEE Transactions on Very Large Scale Integration System, vol. 19, 2011.
[2-8] F. Zhao, Q. Wang, L. Zhang, and Z. Jiang, “Impact of line edge roughness and line width roughness on critical dimension variation,” IEEE International Conference, vol. 3, pp. 475-479, 2012.
[2-9] S. Xiong and J. Bokor, “A simulation study of gate line edge roughness effects on doping profiles of short-channel MOSFET devices,” IEEE Transactions on Electron Devices, vol. 51, 2004.
[2-10] J. Simmons and R. Verderbert, “New conduction and reversible memory phenomena in thin insulating films,” Mathematical and Physical Sciences, vol. 301, pp. 77-102, 1967.
[2-11] J. Blanc and D. Staebler, “Electrocoloration in SrTiO3: vacancy drift and oxidation-reduction of transition metals,” Physical Review B, vol. 4, pp. 3548-3557, 1971.
[2-12] S. Liu, N. Wu, and A. Ignatieva, “Electric-pulse-induced reversible resistance change effect in magnetoresistive films,” Appl. Phys. Lett., vol. 76, pp. 2749-2751, 2000.
[2-13] M. Terai, Y. Sakotsubo, Y. Saito, S. Kotsuji, and H. Hada, “Effect of bottom electrode of ReRAM with Ta2O5/TiO2 stack on RTN and retention,” IEEE IEDM Tech. Dig., pp. 775-778, 2009.
[2-14] S. Yu, B. Lee, and H. Wong, “Metal oxide resistive switching memory,” in Functional Metal Oxide Nanostructures, 2011.
[2-15] H. Wong, and H. Lee, "Metal–oxide RRAM," in Proceedings of the IEEE, vol. 100, pp. 1951-1970, 2012.
[2-16] S. Yu, X. Guan, and H. Wong, “Conduction mechanism of TiN /HfO(x)/Pt resistive switching memory: A trap-assisted-tunneling model,” Appl. Phys. Lett., vol. 99, 063507, 2011.
[2-17] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, “Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface,” Appl. Phys. Lett., vol. 85, pp. 4073-4075, 2004.
[2-18] S. Hsua, T. Li, and N. Awaya, “Resistance random access memory switching mechanism,” J. Appl. Phys., vol. 101, p. 024517, 2007.
[2-19] D. Strukov, J. Borghetti, and R. Williams, “Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior,” Small, vol. 5, pp. 1058-1063, 2009.
[2-20] N. Xu, B. Gao, L. Liu, B. Sun, X. Liu, R. Han, J. Kang, and B. Yu, “A unified physical model of switching behavior in oxide-based RRAM,” IEEE VLSI Symp. Tech. Dig., pp. 100-101, 2008.
[2-21] G. Buh, I. Hwang, and B. Park, “Time-dependent electroforming in NiO resistive switching devices,” Appl. Phys. Lett., vol. 95, 142101, 2009.
[2-22] M. Janousch, G. Meijer, U. Staub, B. Delley, S. Karg, and B. Andreasson, “Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory,” Adv. Mater., vol. 19, pp. 2232-2235, 2007.
[2-23] G. Park, X. Li, D. Kim, R. Jung, M. Lee, and S. Seo, “Observation of electric-field induced Ni filament channels in polycrystalline NiOx film,” Appl. Phys. Lett., vol. 91, p. 222103, 2007.
[2-24] G. Bersuker, D. Gilmer, D. Veksler, J. Yum, H. Park, S. Lian, L. Vandelli, A. Padovani, L. Larcher, K. McKenna, A. Shluger, V. Iglesias, M. Porti, M. Nafria, W. Taylor, P. Kirsch, and R. Jammy, “Metal oxide RRAM switching mechanism based on conductive filament microscopic properties,” IEEE IEDM Tech. Dig., pp. 456-459, 2010.
[2-25] H. Lee, P. Chen, T. Wu, Y. Chen, C. Wang, P. Tzeng, C. Lin, F. Chen, C. Lien, and M. Tsai, “Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM,” IEEE IEDM Tech. Dig., pp. 297-300, 2008.
[2-26] L. Goux, J. Lisoni, X. Wang, M. Jurczak, and D. Wouters, “Optimized Ni oxidation in 80-nm contact holes for integration of forming-free and low-power Ni/NiO/Ni memory cells,” IEEE Trans. Electron Devices, vol. 56, pp. 2363-2368, 2009.
[2-27] K. Kinoshita, K. Tsunoda, Y. Sato, H. Noshiro, S. Yagaki, M. Aoki, and Y. Sugiyama, “Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance,” Appl. Phys. Lett., vol. 93, 033506, 2008.
[2-28] P. Gu, Y. Chen, H. Lee, P. Chen, W. Liu, W. Chen, Y. Hsu, F. Chen, and M. Tsai, “Scalability with silicon nitride encapsulation layer for Ti/HfOx pillar RRAM,” IEEE VLSI Symp. Tech. Dig., pp. 146-147, 2010.
[3-1] C. Walczyk, C. Wenger, R. Sohal, M. Lukosius, A. Fox, J. Dąbrowski, D. Wolansky, B. Tillack, H. Müssig, and T. Schroeder, “Pulse-induced low-power resistive switching in HfO2 metal-insulator-metal diodes for nonvolatile memory applications,” J. Appl. Phys., vol. 105, p. 114103, 2009.
[5-1] Y. Liu, T. Kamei, T. Matsukawa, K. Endo, S. O'uchi, J. Tsukada, H. Yamauchi, Y. Ishikawa, T. Hayashida, K. Sakamoto, A. Ogura, and M. Masahara "Experimental study of tri-gate SOI-FinFET flash memory," IEEE SOI, pp. 113-114, 2013.
[5-2] S. Tsuda, Y. Kawashima, K. Sonoda, A. Yoshitomi, T. Mihara, S. Narumi, M. Inoue, S. Muranaka, T. Maruyama, T. Yamashita, Y. Yamaguchi, and D. Hisamoto, "First demonstration of FinFET split-gate MONOS for high-speed and highly-reliable embedded flash in 16/14nm-node and beyond," IEEE IEDM Tech. Dig., pp. 11.1.1-11.1.4, 2016.
[5-3] H. Pan, K. Huang, S. Chen, P. Peng, Z. Yang, C. Kuo, Y. Chih, Y. King, and C. Lin, "1Kbit FinFET dielectric (FIND) RRAM in pure 16nm FinFET CMOS logic process," IEEE IEDM Tech. Dig., pp. 10.5.1-10.5.4, 2015.
[5-4] E. Hsieh, Y. Kuo, C. Cheng, J. Kuo, M. Jiang, J. Lin, H. Cheng, S. Chung, C. Liu, T. Chen, Y. Yeah, T. Chen, and O. Cheng, "First demonstration of flash RRAM on pure CMOS logic 14 nm FinFET platform featuring excellent immunity to sneak-path and MLC capability," IEEE VLSI Symp. Tech. Dig., pp. 6.3.1-6.3.2, 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top