跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/14 22:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許致展
研究生(外文):Xu, Zhi-Zhang
論文名稱:不同人工飼料與養殖模式對仿刺參成長與活存之影響
論文名稱(外文):The Effects of Different Artificial Diets and Aquaculture Mode on Growth and Survival of Apostichopus japonicasㄆ
指導教授:冉繁華冉繁華引用關係
指導教授(外文):Nan, Fan-Hua
口試委員:沈士新古鎮鈞鄭安倉冉繁華
口試委員(外文):Sheen, Shyn-ShinKu, Chen-ChunCheng, Ann-ChangNan, Fan-Hua
口試日期:2018-01-12
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:59
中文關鍵詞:仿刺參混養成長蛋白質來源發酵蛋白質需求
外文關鍵詞:Apostichopous japonicusprotein sourcesco-culturegrowthfermentedprotein requirement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:403
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:1
本論文分成兩大部分,一為仿刺參與九孔、白蝦混養,評估台灣的冬天是否適合進行混養與探討混養對成長的影響,二為人工飼料的開發:以魚粉與發酵豆粉作為蛋白質來源,探討最適動植物蛋白質比例與最適蛋白質含量。
實驗一為建立仿刺參與九孔混養的養殖技術,十二月至隔年五月以初重29 g之仿刺參於台灣北部與九孔混養,結果顯示養殖九十天後即可達上市體型,陸地池的特定成長率(specific growth rate)為1.59 ± 0.02 %,高於海底池的特定成長率1.57 ± 0.01 %(p < 0.05)。
實驗二於室外流加水系統中以密度為60 ind/m2的白蝦與不同密度(21、42 ind/m2)的仿刺參混養。實驗十二週後21 ind/m2組的海參有最高的特定成長率(1.04 ± 0.02 %),各組白蝦的特定成長率沒有顯著差異(p > 0.05)。
實驗三以室內流加水系統養殖,設置三個處理組:單養白蝦組、白蝦海參混養組、單養海參組,白蝦密度為60 ind/m2、海參密度為11 ind/m2,探討混養對生物成長的影響。實驗12週後混養組中的白蝦特定成長率(0.28 ± 0.03 %)顯著高於單養白蝦組(0.21 ± 0.01 %)(p < 0.05),單養海參組特定成長率(0.77 ± 0.03 %)顯著高於混養組的海參 (0.52 ± 0.06 %)(p < 0.05)。
實驗四以不同比例魚粉與發酵豆粉做為動植物蛋白質來源,探討仿刺參的最適動植物蛋白比例(1:0、3:1、2:1、1:1、1:2、1:3、0:1)。投餵初重為18.81±0.47 g的仿刺參十二週後特定成長率最高的組別為1F3B組(0.97 ± 0.03 %),最低為F組(0.66 ± 0.05 %)。
實驗五配置四個不同蛋白質含量的比例(10、20、30、40 %)的飼料,投餵初重14.67 ± 0.27 g的仿刺參十四週後,FB20組有最高的特定成長率(1.19 ± 0.03 %),根據折線回歸曲線得知仿刺參人工飼料的最適蛋白質含量為18.33 %。
This study can be divided into two parts: first, the sea cucumber Apostichopus japonicus co-cultured with abalone Haliotis diversicolor or white shrimp Litopanaeus vannamei to investigate the effects of co-culture and if co-culture of A. japonicus with H. diversicolor or L. vannamei is doable during the winter season at northeast Taiwan; Second, to develope the artificial diets of sea cucumber. The fish meal and fermented soybean meal were employed as the protein sources in producing sea cucumber artificial diets that were tested to discover the optimal animal to plant protein ratio, as well as the ideal crude protein content in the diet.
The first experiment aims to establish the technique of sea cucumber co-culture with abalone in winter at northeast Taiwan in which sea cucumbers with initial weight of 29 g were used. Results indicated that after 90 days co-culture with abalone, the sea cucumbers could reach commercial size before the occurrence of aestivation. Additionally, the specific growth rate(SGR) in land-based culture (1.59 ± 0.02 %) is higher than that in sea-based culture (1.57 ± 0.01 %).
The second experiment aims to discover the best specific growth rate under different densities of sea cucumber (21, 42 ind/m2) co-cultured with white shrimp (60 ind/m2) outdoor with flow-through system for 12 weeks. The results indicated that the SGR (1.04 ± 0.02 %) of the group with 21 ind/m2 of sea cucumber is significantly higher than with 42 ind/m2 (p < 0.05).
The third experiment aims to investigate the effects of co-culture of sea cucumber with white shrimp on the matter of SGR. There are 3 treatments designed for this experiment and all of them were performed indoor with flow-through system for 12 weeks. They are 1) monoculture of white shrimp, 2) sea cucumber co-culture with white shrimp, 3) monoculture of sea cucumbers. The density of white shrimp and sea cucumber is 60 ind/m2 and 11 ind/m2, respectively. After 12 weeks, it was shown that the SGR of white shrimp in the co-culture group is higher than that of monoculture group (0.28 ± 0.03 % vs. 0.21 ± 0.01 %); in terms of sea cucumber, the SGR of the monoculture group is significant higher than that of co-culture group (0.77 ± 0.03 % vs. 0.52 ± 0.06 %) (p < 0.05).
The fourth experiment aims to develop the artificial diets for sea cucumber in order to achieve better SGR that fish meal (F) and fermented soybean meal (B) were employed as major protein sources. To obtain the optimal animal to plant protein ratio, 7 different ratios of fish meal (F) and fermented soybean meal (B) were tested (1F:0B, 3F:1B, 2F:1B, 1F:1B, 1F:2B, 1F:3B, 0F:1B). After 12-week period, it showed that sea cucumbers fed with artificial diets of 1F:3B had the highest SGR (0.97 ± 0.03 %); on the other hand, animals having artificial diets of 1F:0B showed the lowest SGR (0.66 ± 0.05 %).
The fifth experiment aims to identify the ideal crude protein level with the combination of fish meal (F) and fermented soybean meal (B) 1 to 3 (1F:3B). The initial body weight of sea cucumbers were 14.67 ± 0.27 g and four diets with different crude protein level (10 %, 20 %, 30 %, and 40 %) were tested for a period of 14 weeks. The treatment of protein level at 20 % had the highest SGR (1.19 ± 0.03 %), which was significant higher than those from other treatments (p < 0.05). According to the broken-line, the optimum protein level of sea cucumber artificial diet is 18.33 %.
謝辭 I
摘要 II
Abstract III
目錄 V
表目錄 VII
圖目錄 VIII
附錄 IX
第一章、 前言 1
第二章、 文獻整理 3
一、仿刺參(Apostichopus japonicas) 3
1.分類地位 3
2.仿刺參的分類與外觀 3
3.棲地 4
4.攝食習性 4
5.仿刺參的生殖 5
6.仿刺參的利用與營養價值 7
7.仿刺參的疾病 7
二、產業現況 8
1.仿刺參的經濟價值 8
2.仿刺參的養殖方式 9
3.綜合水產養殖(Integrated aquaculture) 10
4.仿刺參的飼料 12
5.發酵豆粉 13
第三章、 材料方法 15
一、實驗材料 15
1.實驗生物 15
2.飼料原料 15
二、實驗設計 15
1.仿刺參與九孔的混養 15
2.南美白對蝦與不同密度的仿刺參混養 16
3.南美白對蝦與低密度仿刺參混養 16
4.不同比例的魚粉與發酵豆粉對仿刺參成長的影響 16
5.仿刺參之最適蛋白質需求量 17
三、成長指標 17
1.秤重 17
2.增重率 (Percent weight gain) 17
3.特定生長率 (SGR) 17
4.飼料轉換率(FCR) 18
四、粗成分分析 19
1.水分 19
2.灰分 19
3.粗蛋白 19
4.粗脂質 20
5.總能量分析 20
五、統計方法 20
第四章、 結果 21
一、九孔與仿刺參的混養 21
二、白蝦與仿刺參的混養 21
三、白蝦與低密度仿刺參的混養 21
四、不同比例的魚粉與發酵豆粉對仿刺參成長的影響 22
五、仿刺參之最適蛋白質需求量 23
第五章、 討論 24
一、九孔與仿刺參混養 24
二、白蝦與仿刺參的混養 25
1.不同海參密度與白蝦混養對海參成長之影響 25
2.混養海參對白蝦成長之影響 25
3.海參的食物來源對其成長之影響 26
三、仿刺參的營養需求 26
1.仿刺參的最適蛋白質來源 26
2.仿刺參飼料的最適蛋白質含量 28
第六章、 結論 29
參考文獻 30
王印庚,方波,張春雲,榮小軍,2006。養殖刺參保苗期重大疾病”腐皮綜合症”病原及其感染源分析。中國水產科學,13,610-616。
王印庚,榮小軍,張春雲,孫慧玲,2004。養殖刺參爆發性疾病-腐皮綜合症的初步研究與防治。齊魯漁業,21,44-47。
王印庚,榮小軍,廖梅杰,李彬,陳貴平,劉崎,鄒安革,范瑞用,2014。刺參健康養殖與病害防控技術叢解。中國農業出版社。
王吉橋,張坤,姜玉聲,張劍誠,2009。在無藻粉飼料中添加包膜胺基酸對幼刺參生長、消化和免疫指標的影響。水產科學,28,36-43。
王吉橋,程鑫,楊儀,王年斌,2007。不同密度的蝦夷馬糞海膽與仿刺參混養的研究。大連水產學院學報,22,102-108。
王吉橋,楊儀,程鑫,,張劍誠,2007。不同密度的仿刺參與皺紋盤鮑和紫貽貝混養試驗。漁業現代化,34,34-37。
王吉橋,程鑫,高志英,遲偉,王年斌,2008。仿刺參與蝦夷馬糞海膽和菲律賓蝦仔混養效果的初步研究。水產學報,32,740-748。
王吉橋,蔣湘輝,姜玉聲,張劍誠,2009。玉米蛋白對仿刺參幼參生長和消化的影響。水產科學,28,551-555。
王吉橋,蔣湘輝,姜玉聲,張劍誠,2009。在飼料中添加包膜賴氨酸
對仿刺參生長、消化和體成分的影響。水產科學,28,241-245。
王吉橋,蔣湘輝,趙麗娟,蘇久旺,孫丕海,2007。不同飼料蛋白源對仿刺參幼參生長的影響。飼料博覽,19,9-13。
朱偉,麥康森,張百剛,王福振,徐桂玉,2005。刺參稚參對蛋白質和脂肪需求量的初步研究。海洋科學,29,54-58。
李成林,宋愛環,胡煒,孫元芹,李翹楚,張豫,2008。異地刺參選育組合的稚幼參生長速率差異性分析。水產科學,27,507-510。
李成林,宋愛環,胡煒,2010。山東省刺參養殖產業現狀分析與可持續發展對策。漁業科學進展,31,126-133。
李素紅,梁萌青,孫慧玲,燕敬平,2012。飼料中適宜的蛋白質和胺基酸水平對刺參生長的影響。漁業科學進展,33,59-63。
李猛,廖梅杰,王印庚,常青,李彬,張振,范瑞用,2015。滸苔添加比例與微生物發酵對幼刺参生長、消化和非特異性免疫的影響。動物營養學報,27,3270-3278。
于宗赫,胡超群,齊占會,江海英,任春華,羅鵬,2012。玉足海參與凡納濱對蝦的混養效果。水產學報,36,1081-1087。
吳永恒,王秋月,馮政夫,李彬斌,朱偉,2012。飼料粗蛋白含量對
刺參消化酶及消化道結構的影響海洋科學,36,36-41。
宋堅,何舟,程龍,龐雲龍,寧軍號,常亞青,2015。飼料添加苜蓿草粉對刺參生長、體成分及免疫酶的影響。草亞學業,24,208-214。
何碧月、陳紫媖,2011。大豆粉在水產飼料中的利用。水試專訊,34,48-50。
周瑋,王俊傑,陸佳,王興兵,2008。仿刺參攝食砂礫粒度的選擇性研究。大連水產學院學報,23,446-450。
胡凡光,高翔,王志剛,李美真,周文江,麻丹萍,李紹彬,張豫,2011。刺參休眠規律研究。漁業現代化,38,37-40。
袁玉成,2005。海參飼料研究的現狀與發展方向。水產科學,12,54-56。
袁秀堂,楊红生,周毅,毛玉澤,許强,王麗麗,2008。刺參對淺海筏式貝類養殖系統的修復潛力。應用生態學報,19,866 – 872。
夏蘇東,2012。刺參幼參攝食行為與蛋白質營養需要研究。中國科學院海洋研究所博士論文。
孫建璋,莊定根,陳蘭濤,褚長建,2006。刺參南移養殖技術研究。浙江海洋學院學報,25,33-38。
常亞青,丁君,宋堅,2004。海參、海膽生物學研究與養殖,海洋出版社。
陳秀男,2016。養蝦與疾病控制策略。國家圖書館出版品。
陳怡婷,2017。台灣東北角地區鮑魚產業經濟分析。國立臺灣海洋大學環境生物與漁業科學學系碩士論文。
陳星文,2017。飼料中不同比例發酵豆粉取代魚粉對白蝦成長與非特異性免疫反應之影響。國立臺灣海洋大學水產養殖學系碩士論文。
陳建呈,2015。不同海藻及不同蛋白質來源飼料對仿刺參成長之影響。國立臺灣海洋大學水產養殖學系碩士論文。
張春雲,王印庚,榮小軍,2006。養殖刺參腐皮綜合症病原菌的分離與鑑定。水產學報,30,118-123。
張螢,姜國良,劉雲,吳志強,馬海燕,蘇明霞,2009。仿刺參”腐皮綜合症”病灶處優勢菌的分離鑑定及AHLs信號分子的檢測。微生物學通報,36,1664-1669。
陳辭守,2017。飼料中不同比例發酵豆粉取代魚粉對牙鮃幼魚成長及非特異性免疫之影響。國立臺灣海洋大學水產養殖學系碩士論文。
郭娜,董雙林,劉慧,2011。幾種飼料原料對刺參幼參生長和體成分的影響。漁業科學進展,1,122-128。
麥康森,2016。水產動物營養與飼料學。中國農業出版社。
黃華偉,王印庚,陳霞,張鳳萍,2010。老化參池刺參腐皮综合症致病原的分離與鑑定。水產學報,34,1460-1468。
隋錫林,劉學光,王鈞,2010。遼寧省刺參養殖現狀及對若干關鍵問題的思考。水產科學,29,688-690。
楊文真,2014。海上網箱鮑參混養生態養殖模式探討。福建水產,36,495-499。
葛輝,何麗斌,林琪,方旅平,周宸,2012。福建海區箱網養殖刺參腐皮综合症”病原分析與鑑定。福建水產,2,21-26。
趙世民,1998。台灣礁岩海岸的海參。
趙斌,胡煒,李成林,韓莎,嚴芳,2016。兩種甘薯飼料原料的營養成分及其對仿刺參(Apostichopus japonicus)攝食與生長的影響。漁業科學進展,37,80-86。
趙鵬,2010。刺參Apostichopus japonicus攝食選擇性的基礎研究。中國科學院研究生院碩士碩士論文。
廖玉麟,1997。中國動物志,棘皮動物門,海參綱。科學出版社。
廖明玲,楊歡,任同軍,2013。刺參營養需求研究進展。中國飼料,
14,31-32。
樊月居,李曉東,羅智,孫忠正,2010。飼料中用豆粕替代魚粉對仿
刺參幼參生長、體成分及消化酶活性的影響。大連水產學院學報,25,71-75。
劉永宏,李馥馨,宋本祥,1996。刺参( Apostichopus japonicus Selenka)夏眠習性研究I 夏眠生態特點的研究。中國水產科學,1996,3,41-48。
劉石林,楊紅生,周毅,張濤,袁秀堂,2006。刺參對筏式養殖海區生物沉積物清除作用的模擬研究。海洋科學,30,21–24。
劉旭佳,周 毅,楊红生,汝少國,2013。大葉藻碎屑作為刺參食物
來源的實驗研究。海洋科學,37,32-38。
劉富光,2014。淺談綜合水產養殖模式與養殖水耕系統。行政院農委會水產試驗所。
劉曉芳,薛常湖,王玉明,李紅艷,2011。乳山刺參體壁和內臟營養成分比較分析,35,587-593。
譚肖英,羅智,李曉東,張世亮,孫忠正,2009。用螺旋藻替代魚粉對仿刺參生長及其體組成的影響。大連水產學院學報,24,559 - 562。
蘇惠美,張銀戀,施建宏,2011。養殖海葡萄、石蓴及海木耳的營養成分。科技研究,35,12-16。
Ahlgren, M. O., 1998. Consumption and Assimilation of Salmon Net Pen Fouling Debris by the Red Sea Cucumber Parastichopus californicus: Implications for Polyculture. J World Aquac Soc, 29, 133-139.
AOAC(Association of Offixe Analytic Chemists), 1984. Official Methods of Analysis,14 th edition, AOAC, Arlington, VA, 1141.
AOAC(Association of Offixe Analytic Chemists), 1995. Official Megthods of Analysis 16thed. AOAC, Arlington, VA.
Asha, P. S., Muthiah, P., 2007. Growth of the hatchery-produced juveniles of commercial sea cucumber Holothuria (Theelothuria) spinifera Theel. Aquacult. Res. 38, 1082-1087.
Barnes, M. E., Brown M. L., Rosentrater, Sewell, K. A., Jsaon R., 2012. An initial investigation replacing fish meal with a commercial fermented soybean meal product in the diets of juvenile rainbow trout. Indian J Anim Sci 2, 234–243.
Chang, Y., Shi, S., Zhao, C., Han, Z., 2011. Characteristics of papillae in wild,cultivated and hybrid sea cucumber(Apostichopus japonicus). Afr. J. Biotechnol. 10, 13780-13788.
Chen, J. X., 2003. Overview of sea cucumber farming and sea ranching practices in China. SPC Beche-de-mer Infor. Bull 18, 18-23.
Chen, J. X., 2004. Advances in sea cucumber aquaculture and management. FAO FisheriesTechnical Paper 463, 25-38.
Chen, W., Wang, W., Yu, W., 2012. The technique of gonad promotion of Apostichopus japonicus indoors in winter (in Chinese with English abstract). Fish Sci. 11, 43-44.
Chen, Y. F., Hu, C. Q., Ren, C. H., 2015. Application of wet waste from whrimp (Litopenaeus vannamei) with or without sea mud to feeding sea cucumber (Stichopus monotuberculatus). J. Ocean Univ. China 14, 114-120.
Choo, P. S., 2008. Population status , fisheries and trade of sea cucumber in Asia. Global Rev. Fish. Trade 516, 81-118.
Cho, C. Y., Bureau, D. P., 2001. A review of diet formulation strategies and feeding system to reduce excretory and fed wastes in Aquaculture. Aquacult. Res. 32, 349-360.
Dar, M. A., Ahmad H. O., 2006. The selectivity and ecological role of shallow water holothurians in the Red sea. SPC Beche-de-mer Infor. Bull 24, 11-21.
De La Higuera, M., 2001. Effects of nutritional factors and feed characteristics on feed intake. In: Food Intake in Fish. 250–268.
Ding, Z. L., Zhang, Y. X., Ye, J. Y., Du, Z. Y., Kong, Y. Q., 2015. An evaluation of replacing fish meal with fermented soybean meal in the diet of Macrobrachium nipponense: Growth, nonspecific immunity, and resistance to Aeromonas hydrophila. Fish Shellfish Immunol. 44, 295-301.
Dong, S., Liang, M., Gao, Q., Wang, F., Dong, Y., Tian, X., 2010. Intra-specific effects of sea cucumber (Apostichopus japonicus) with reference to stocking density and body size. Aquacult. Res. 41, 1170-1178.
Dong, Y. W., Dong S. L., Tian X. L., Wang, F., Zhang, M. Z., 2006. Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture 255, 514-521.
Dubrovskii, S. V., Sergeenko. V.A., 2002. Distribution pattern of far Eastern sea cucumber Apostichopus japonicus in Busse lagoon (Southern Sakhalin). Russ. J. Mar. Biol. 28, 87-93.
FAO, 2016. Cultured Aquatic Species Information Programme Stichopus japonicus (Selenka, 1867).
Floreto, E. A. T., Bayer, R. C., Brown, P. B., 2000. The effects of soybean-based diets, with and without amino acid supplementation, on growth and biochemical compostition of juvenile American lobster Homarus americamus. Aquaculture 189, 211-235.
Gao, F., Xu, Q., Yang, H., 2011. Seasonal biochemical changes in composition of body wall tissues of sea cucumber Apostichopus japonicus(in Chinese with English abstract). Chinese J. Oceanol. Limnol. 29 , 252-260.
Hamel, J.-F., Mercier, A., 2008. Population status , fisheries and trade of sea cucumbers in temperate areas of the northern hemisphere. FAO Fisheries and Aquaculture Technical papers 516, 257-291.
Han Q. X., John K. Keesing, Liu D.Y., 2016. A Review of Sea Cucumber Aquaculture, Ranching, and Stock Enhancement in China. Reviews in Fisheries Science & Aquaculture, 24, 326–341.
Hannah L., Pearce C.M., Cross S.F., 2013. Growth and survival of California sea cucumbers (Parastichopus californicus) cultivated with sablefish (Anoplopoma fimbria) at an integrated multi-trophic aquaculture site. Aquaculture 406-407, 34-42.
Hu, C., Li, H., Xia, J., Zhang, L., Luo, P., Fan, S., Peng, P., Yang, H., Wen, J., 2013. Spawing , larval development and juvenile growth of the sea cucumber Stichopus horrens. Aquaculture 404, 47-54.
Hu, M., Li, Q., 2009. Comparative growth and heterosis of hybrids of sea cucumber (Stichopus japonicus) between Chinese and Japanese populations. J. Ocean Univ. China 39, 375-380.
Jumars, P.A. and Self R.F.,1986. Gut-marker and gut-fulness methods for estimating field and laboratory effects of sediment transport on ingestion rates of deposit feeders. J. Exp. Mar. Biol. Ecol. 98, 293-310.
Kalinin, V. I., Levin, V. S., Stonik, V. A., 1994. The chemical morphology:Triterpene glycoiside of sea cucumbers(Holothurioidea, Echinodermata)(In Russian). Dalnauka, Vladivostok, 1-284.
Kang, K. H., Kwon, J. Y., Kim, Y. M., 2003. A beneficial coculture: charm abalone Haliotis discus hannai and sea cucumber Stichopus japonicus. Aquaculture 216, 87-93.
Kanno, M., Kijima, A., 2002. Quantitative and qualitative evaluation on the color variation of the Japanese sea cucumber Stichopus japonicus, Suisanzoshoku 50, 63-70.
Kanno, M., Kijima, A., 2003. Genetic differentiation among three color variants of Japanese sea cucumber Stichopus japonicus. Fish, Sci. 69, 806-812.
Kanno, M., Suyama, Y., Li, Q., Kijima, A., 2006. Microsatellite analysis of Japanese sea cucumber, Stichopus(Apostichopus) japonicus, supports reproductive isolation in color variants. J. Mar. Biotecnol. 8, 672-685.
Kiers, J. L., Van laeken, A. E. A., Rombouts, F. M., Nout, M. J. R., 2000. In vitro digestibility of Bacillus fermented soya bean. Int. J. Food Microbiol. 60, 163-169.
Kim, K.-D., Bae, K.-M., Han, H.-S., Kim, K.-W., Lee, B.-J, Kim, S.-S, Park, K.-Y., Kwon, O-N., 2016. Effects of the dietary inclusion of Sea Mud on the growth and body composition of juvenile sea cucumbers Apostichopus japonicus. Korean J Fish Aquat Sci 49, 26-29.
Levin, V. S., 1999. About the Latin name of the Japanese sea cucumber. SPC Beche-de mer Infor. Bull. 11, 25.
Levin, V. S., Kalinin, V. I., Fedorov, S. N., Smiley, S., 1986. The structure of triterpene glycosides and systematic position of tow holothurians of the family Stichopodidae. Mar. Bio. 4, 72-77.
Levin, V. S., Kalinin, V. I., Maltsev, I. I., Stonik, V. A., 1985. The Structure of triterpene glycoside and systematics of aspodochirote holothurians. Mar. Biol. 2, 3-11.
Li, J. W., Dong, S. G., Gao, Q. F., Wang, F., Tian, X. G., Zhang, S. S., 2014. Total organic carbon budget of integrated aquaculture system of sea cucumber Apostichopus japonicus, jellyfish Rhopilema esculenta and shrimp Fenneropenaeus chinensis. Aquacult. Res. 45, 1825-1841.
Li, W., Tian, Y., Ma, Z., Chang, Y., 2011. Selective breeding technology of high quality seed of Apostichopus japonicus(in Chinese). Fish. Sci. Technol. Infor. 38, 99-101.
Liao, Y., 1980. The aspidochirote holothurians of China with erection of a new genus. In: Echinoderms: Present and past, A. A. Balkema, Rotterdam, 55-120.
Lin, H. Z., Chen, X., Chen, S. S., Li, Z. J., Huang, Z., Niu, J., Wu, K. C., Lu, X., 2011. Replacement of fish meal with fermented soybean meal in practical diets for pompano Trachinotus ovatus. Aquacult. Res. 44, 151-156.
Lin, Z., Zheng, J., Cao, Z., 2003. Technology in the Apostichopus japonicus aquaculture(in Chinese). Shangdong Fish. 8, 1-2.
Liu, Y., Dong, S.S., Tian X.L.,Wang, F., Gao, Q. F., 2009. Effects of dietary sea mud and yellow soil on growth and energy budget of the sea cucumber Apostichopus japonicus(Selenka). Aquaculture 286, 266-270.
Liu, X., Gu, B., Zhang, X., 2002. Analysis and countermeasures on common problems occurring in hatcheries of sea cucumber. Modern Fisheries Message, 26-27.
Liu, S., Sun J., Ru, X., H. J.-F., Mercier, A., 2015. Brood stock conditioning and spawing, In: Yang, H. S., Hamel, J.-F., Mercier, A. (Eds), The sea cucumber: Apostichopus japonicus: History, Biology and Aquaculture. Academic Press, London, pp. 101-110.
Liu, X., Li, Y., Zhang , Y., Zhou, W., Zhang , X., 2011. The new patterns study of high quality seed breeding of Apostichopus japonicus(in Chinese). China fish. 7, 66-68.
Liu, X., Xu, H., Li, Y., 2002. Technology of the Apostichopus japonicus aquaculture in ponds(in Chinese). Fish. Modern, 4, 16-18.
Lovatelli, A., Conand, C., 2004. Food and Agriculture Organization of the United Nations(FAO). Advances in sea cucumber aquaculture and management.
Lovell, R.T, 1989. Nutrition and Feeding of Fish. Van Nostrand Reinhold, New York, USA.
Mangion, P., Taddel, D.,Frouin, P., and Conand, C., 2004. Echinoderms: Munchen. Taylor and Francis Group, London, 311-317.
Massin, C., 1982. Echinoderm nutrition. 493-497.

Mercier, A., Hamel, J.-F., 2009. Endogenous and exogenous control of gametogenesis and spawning in echinoderms. Adv. Mar. Biol. 55, 1-302.
Mercier, A., Hamel, J.-F., 2013. Advances in Aquaculture Hatchery Technology. Woodhead publishing, 431-454.
Mitsukuri, K., 1897. On changes which are found with advancing age in the calcareous deposits of Stichopus japonicus, Selenka. Ann. Zool. Jap. 1, 31-42.
Moriarty, D.J.,1982. Feeding of Holothurian atra and Stichopus chloronotus on bacteria,organic carbon and oranic nitrogen in sediments of the Great barrier Reef. Aust. J. Mar. Freshw. Res. 33, 255-263.
Mu, J., Song, J., 2005. Technology of the raft caged Apostichopus japonicus aquaculture in epicontinental seas(In Chinese). Sci. Fish Farming 3, 39.
Nadon, M. O., Himmelman, J. H., 2006. Stable isotopes in subtidal food webs: have enriched carbon ratios in benthic consumers been misinterpreted? Limnol. Oceanogr. 51, 828-836.
Paltzat, D.L., Pearce C.M., Barnes P.A., McKinley R.S., 2008. Growth and production of California sea cucumbers (Parastichopus californicus Stimpson) co-cultured with suspended Pacific oysters(Crassostrea gigas Thunberg). Aquaculture 275, 124-137.
Paulay, G., 2010. Apostichopus japonicus (Selenka, 1867). World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=241776(access 14 octobor 2010).
Pitt, R., Duy., N. D. Q., 2004. Breeding and culture of the sea cucumber
Holothuria scabra in Vietnam. Food and Agriculture Organization of the United Nations.FAO Fish. Tech. Pap. 463, 333-346.
Pomerleau, S.,Engle, C. R., 2003. Production of stocker-size channel catfish: effect of stocking density on production characteristics, costs, and economic risk. North Am. J. Aquac. 65, 112-119.
Purcell, Steven. W., Jacques P., Nicolas F., 2006. Experimental evaluation of co-culture of juvenile sea cucumbers, Holothuria scabra (Jaeger), with juvenile blue shrimp, Litopenaeus stylirostris(Stimpson). Aquacul. Res. 37, 515-522.
Qi, Z. H., 2013. Feasibility of Offshore Co-culture of Abalone, Haliotis discus hannai Ino, and Sea Cucumber, Apostichopus japonicus, in a Temperate Zone. J World Aquac Soc 44, 565-573.
Qiao, J., Cheng, B., 2005. The situation and expection of artificial pond culture for Apostichiopus japonicus Selenka(in Chinese). Mar. Sci. 9, 80-82.
Qin, C. X., Dong, S. G., Tan, F. Y., Tian, X. L,, W, F., Dong, Y. W., Gao, Q. F., 2009. Optimization of stocking density for the sea cucumber, Apostichopus japonicus Selenka, under feed-supplement and non-feed-supplement regime in pond culture. J. Ocean Univ. China 8, 296-302.
Rahmana, M. A., Mazida, M. A., Rahmanb, M. R., Khana, M. N., Hossaina, M. A., Hussaina, M. G., 2005. Effects of stocking density on survival and growth of critically endangered mahseer, Tor putitora (Hamilton) in nursery ponds. Aquaculture 249, 275-284.
Reddy, N. R., Pierson, M. D., 1994. Reduction in anti-nutritional and toxic components in plant foods by fermentation. Food Res. Int. 27, 281–289.
Ren, Y. C., Dong, S. L., Qin, C. X., Wang, F., Tian, X. L., Gao, Q. F., 2012. Ecological effects of co-culturing sea cucumber Apostichopus japonicus (Selenka) with scallop Chlamys farreri in earthen ponds. Chin. J. Oceanol. Limnol. 30, 71-79.
Rowlanda, S. J., Mifsuda, C., Nixona, M., Boydb, P., 2006. Effects of stocking density on the performance of the Australian freshwater silver perch (Bidyanus bidyanus) in cages. Aqauculture 272, 389-398.
Sang, C., 1962. Biology of the Japanee common sea cucumber Stichopus japonicus Selenka. Pusan National University, Pussan.
Seo, J.-Y., Choi, J., Kim, G.-U., Cho, S.-S., Park H. G., Lee, S.-M., 2008. Effects of dietary protein and lipid levels on growth and body composition of juvenile sea cucumber Apostichopus japonicus. Aquaculture 21, 19-25.
Seo, J.-Y., Lee, S.-M., 2011. Optimum dietary protein and lipid levels for growth of juvenile sea cucumber Apostichopus japonicus. Aquacult. Nutri 17, 56-61.
Seo, J.-Y., Shin, I.-S., Lee, S.-M., 2011. Effects of dietary inclusion of various plant ingredient as an alternative for Sargassum thunbergii on growth and body composition of juvenile sea cucumber Apostichopus japonicus. Aquacult. Nutri 17, 549.556.
Seo, J.-Y., Shin I.-S., Lee, S.-M., 2011. Effects of various protein sources in formulated diets on the growth and body composition of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquacult. Res, 42, 623-627.
Shiu Y. L., Wong S. L., Guei, W. C., Shin, Y. C., 2013. Increase in the plant protein ratio in the diet of white shrimp, Litopanaeus vannamei (Boone), using Bacillus subtillis E20-fermented soybean meal as a replacement. Aquacult. Res. 46, 382-394.
Slater, M. J., Carton, A. G., 2007. Survivorship and growth of the sea cucumber Australostichopus(Stichopus) mollis (Hutton 1872) in polyculture trials with green-lipped mussel farms. Aquaculture 272, 389–398.
Smiley, S., McEuen, F-S., Chaffee, C., Krishnan, S., 1991. Reproduction of marine invertebrates, echinoderms and Iophophorates. Boxwood Press, Pacific Grove, California, USA, 663-750.
Song, D., Ji, A., Liang, H., Wang, W., Chen, Y., 2006. Progress of the studies on the bioactive substances in the Stichopus japonicus(In Chinese with English abstract). Chinese J. Biochem. Pharmaceut. 27, 316-319.
Song, X. Y., Xu, Q., Zhoua, Y., Lin, C., G., Yang, H. S., 2017. Growth, feed utilization and energy budgets of the sea cucumber Apostichopus japonicus with different diets containing the green tide macroalgae Chaetomorpha linum and the seagrass Zostera marina. Aquaculture 470, 157-163.
Steven, W. P., Yves, S., Chantal, C., 2012. Commercially important sea cucumber of the world. FAO Species Catalogue for Fishery Purpose 6, 86-87.
Sui, X., Liu, Y., Liu, Y., Shang, L., 1985. The research about reproduction cycle of sea cucumebrs (in Chinese). J. Fish. China 9 , 303-310.
Sun, X., Li, Q., Kong, L., 2010. Comparative mitochondrial genomics within sea cucumber (Apostichopus japonicus) provide new insights in to relationships among color variants. Aquaculture 309, 280-285.
Sun, Z. L., Gao, Q. F., Dong, S. L., Paul , K. S. S., Wang, F., 2013. Seasonal changes in food uptake by the sea cucumber Apostichopus japonicus in a farm pond:evidence from C and N stable isotopes. Oceanic and Coastal Sea Research 12, 160-168.
Uthicke, S., 1999. Sediment bioturbation and impact of feeding activity of Holothuira (Halodiema) atra and Stichopus chloronotus, two sediment feeding holothurians, at Lizard island, great barrier reef. Bull. Mar. Sci. 64, 129-141.
Wang, H., 2009. Preliminary study on selection of superior varieties and the cross breeding for Apostichopus japonicus (In Chinese with English summary). Master Thesis, Liaoning Normal University.
Wang, J.-h,Guo, H., Zhang, T.-r., Wang, H., Liu ,B.-n., Xiao, S., 2017. Growth performance and digestion improvement of juvenile sea cucumber Apostichopus japonicus fed by solid-state fermentation diet. Aquacult. Nutri.
Wei, Z., Wei, L., 2005. The technique of Echinodermata breeding in north China(in Chinese). Fish Modern 5, 27-28.
Wu, B., Xia, S., Rahman, M. M., Rajkumar, M., Fu, Z.,Tan, J., Yang A., 2015. Substituting seaweed with corn leaf in diet of sea cucumber (Apostichopus japonicus): Effects on growth, feed conversion ratio and feed digestibility. Aquaculture 444, 88-92.
Xia, B., Gao, Q.-F.,Wang, J. Y., Li, P. Y., Zhang, L. M., Zhang, Z. D., 2015. Effects of dietary carbohydrate level on growth, biochemical composition and glucose metabolism of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquaculture 448, 48-50.
Xia, S.,Yang, H., Liu S.,Zhou Y., Zhang L., 2012. Effects of different seaweed diets on growth, digestibility, and ammonia-nitrogen production of the sea cucumber Apostichopus japonicus (Selenka). Aquaculture 338-341, 304-308.
Xia. S., Wang, X., 2015. Nutritional and medicical value, In: Yang, H. S., Hamel, J.-F., Mercier, A. (Eds), The sea cucumber: Apostichopus japonicus: History, Biology and Aquaculture. Academic Press, London, pp. 353-365.
Xing, K., Liu, S.L., Yang, H.S., Zhang, M.Z., Zhou, Y., 2012. Southward transplanted cage-culture of sea cucumber Apostichopus japonicus in China’s Shengsi Islands. SPC Beche-de-mer information bulletin.

Xu, Q., Yang, H., Liu, B., Zhang, L., Liu, Y., Yu, Z., Xing, K., Liu, Q., 2011. A kind of multi-layer combined artificial reef for bottom sowing culture in shallow sea. China patent. Zl200910017421.4. 2011-06-08.
Xu, Q., Hamel. J.-F., Mercier, A., 2015. Feeding, Digestion, Nutritional physiology, and Bioenergetics. In: Yang, H. S., Hamel, J.-F., Mercier, A. (Eds), The sea cucumber: Apostichopus japonicus: History, Biology and Aquaculture. Academic Press, London, 153-172.
Yang, H., Zhang, L., Zhang, T., Liu, Y., Jiang, C., Xu, Q., Liu, B., Zhou, Y., Wang, T., Qu, G., Li, J., Shen, Z., 2011. A kind of oyster shell artificial reef and method for culture and stock enhancement of sea cucumber Apostichopus japonicus (Selenka). China patent. ZL200910017420.X. 2011-05-11.
Yang, H. S., Bai, Y. C., Hamel J.-F.,Mercier, A., 2015. Apostichopus japonicus in the life of Chinese People, In: Yang, H. S., Hamel, J.-F., Mercier, A. (Eds), The sea cucumber: Apostichopus japonicus: History, Biology and Aquaculture. Academic Press, London, pp. 1-23.
Yang, H. S.,Yuan, X. T., Zhou, Y.,Mao, Y. Z., Zhang, T., Liu, Y., 2005. Effects of body size and water temperature on food consumption and growth in the sea cucumber Apostichopus japonicus (Selenka) with special reference to aestivation. Aquacult. Res. 36, 1085-1092.
Yanagisawa, T., 1998. Tropical Mariculture. Academic Press, London. 292-308.
Yi, Y., Lin, C. K., 2001. Effects of biomass of caged Nile tilapia (Oreochromis niloticus) and aeration on the growth and yields in an integrated cage-cum-pond system. Aquaculture 195, 253-267.
Yokoyama H., 2015. Growth and food source of the sea cucumber Apostichopus japonicus cultured below fish cages — Potential for integrated multi-trophic aquaculture. Aquaculture 372-375, 28-38.
Yu, D., Sun, H., Chen, S., 2005. The Culture Technique of Sea Cucumber, The Ocean Publishing Company, China, (in Chinese).
Yu, Z., Zhou, Y., Yang, H., Hu, C., 2014. Bottom culture of the sea cucumber Apostichopus japonicus Selenka (Echinodermata: Holithuroidea) in a fish farm, Southern China. Aquacult. Res. 45, 1434-1441.
Yuan, W., Liu, C., Wang, X., Meng, X., Xia, Z., Zhang, M., Hu, W., 2010. Evaluation and analysis of nutritional composition of different parts of sea cucumber Apostichopus japonicus. Sci. Technol(in Chinese with English abstract). Food Ind. 5, 348-350.
Yuan, W., Zhou, Y., Mao, Y., 2015. Apostichopus japonicus: A key species in integrated polyculture systems, In: Yang, H. S., Hamel, J.-F., Mercier, A. (Eds), The sea cucumber: Apostichopus japonicus: History, Biology and Aquaculture. Academic Press, London, pp. 323-331.
Zamora, L. N., Dollimore, J., Jeffs, A. G., 2014. Feasibility of co-culture of the Australasian sea cucumber (Australostichopus mollis) with the Pacific oyster (Crassostrea gigas) in northern New Zealand. N. Z. J. Mar. Freshwater Res. 48, 394–404.
Zamora, L. N., Jeffs, A. G., 2011. Feeding selection, digestion and absorption of the organic matter from mussel waste by juveniles of the deposit–feeding sea cucumber, Australostichopus mollis. Aquaculture 317, 223-238.
Zhang, B.,Sun D.,Wu Y., 1995.Preliminary analysis on the feeding habit of Apotichopus japonicas in the rocky coast waters of Lingshan Island. Mar. Sci. 3,11-13.
Zhang, C., Wang, Y., Rong, X., Sun, H., Dong, S., 2004. Natural resourcces, culture and problems of sea cucumber worldwide (in Chinese, with English abstract). Mar . Fish. Res. 25., 89-97.
Zhang, L. B., Song, X. Y., H. J-F., Mercier, A., 2015. Aquaculture, Stock Enhancement, and Restocking, In: Yang, H. S., Hamel, J.-F., Mercier, A. (Eds), The sea cucumber: Apostichopus japonicus: History, Biology and Aquaculture. Academic Press, London, pp. 289-322.
Zhang, L., Yang, H., Xu, Q., Xing, K., Zhao, P., Lin, C., 2011. A new system for the culture and stock enhancement of sea cucumber, Apostichopus japonicus (Selenka), in cofferdams, Aquacult. Res. 42, 1431-1439.
Zhang, L., Zhang, T., Xu, Q., Qiu, T., Yang, H., Liu, S., 2014. An artificial oyster-shell reef for the culture and stock enhancement of sea cucumber, Apostichopus japonicus, in shallow seawater. Aquacult. Res., 1-10.

Zhang, Y., Hu, W., Li, C., Zhao, B., Li, Q., Wang, J., Hu, F., Liu, A., 2010. The techniques of artificial breeding and disease prevention of Apostichopus japonicus(in Chinese). Shandong Fish 27, 31-32.
Zhao, P., Yang, H., 2010. Selectivity of particle size by sea cucumber Apostichopus japonicus in different culture systems. Mar. Sci. 34, 11-16.
Zhou, S.,Ren, Y. C., Christopher M. Pearce,Dong S. L., Tian, X. L., Gao, Q. F., Wang, F., 2016. Ecological eff ects of co-culturing the sea cucumber Apostichopus japonicus with the Chinese white shrimp Fenneropenaeus chinensis in an earthen pond. Chin. J. Oceanol. Limnol. 35, 122-131.
Zhou, F., Song, W. X., Shao, Q. G., Peng, X., 2011. Partial replacement of fish meal by fermented soybean meal in diets for black sea bream, Acanthopagrus schlegelii, Juvenile. J World Aquac Soc 42, 184-197.
Zhou, Y., Yang, H. S., Liu S. L., Yuan, X. T., Mao Y. Z., Liu, Y., Xu X. L., Zhang, F. S., 2006. Feeding and growth on bivalve biodeposits by the deposit feeder Stichopus japonicus Selenka (Echinodermata: Holothuroidea)co-cultured in lantern nets. Aquaculture 256, 510-520.
Zou, J., Ma, Y., 2006. Effectiveness analysis of the sea ranching culture adopting artificial reefs(in Chinese). Chinese Fish. Econ. 5, 66-67.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊