(3.236.175.108) 您好!臺灣時間:2021/02/28 02:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:巫柔蓁
研究生(外文):Wu, Rou-Zhen
論文名稱:地熱管材表面結垢控制與抗腐蝕研究
論文名稱(外文):Mineral scaling control and anti-corrosion of the pipe in geothermal system
指導教授:陳惠芬陳惠芬引用關係
指導教授(外文):Chen, Huei-fen
口試委員:宋聖榮黃榮潭莊高樹
口試委員(外文):Song, Sheng-rongHuang, Rong-tanChuang, Kao-shuh
口試日期:2018-01-18
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:應用地球科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:96
中文關鍵詞:地熱腐蝕碳酸鈣結垢塗層
外文關鍵詞:geothermalcorrosioncalcium carbonatescalingcoating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
臺灣位處環太平洋構造帶,火山活動與板塊擠壓造成國內豐富的地熱蘊藏資源。地熱鹵水對於地熱電廠的操作是一障礙。高溫的水溶液富含各種離子與化合物造成嚴重的管壁結垢與腐蝕,使地熱電廠執行困難。本實驗以腐蝕浸漬實驗與結垢沉澱實驗兩個部份探討地熱系統中管材應用,利用大屯火山模擬液腐蝕浸漬實驗,使用材料為雙相不鏽鋼 Duplex 2205、Duplex 2507與Duplex 2594,鎳基合金 C137、1560等5種金屬材料計算其腐蝕速率、並以腐蝕橫截面SEM影像與EDS成分分析比較樣本表面腐蝕程度。另一部分探討基材表面塗層與粗糙度對於抗垢的影響,使用碳酸氫鈉與氯化鈣混合液進行結垢沉澱實驗,塗層材料包含:巧思科技DBX塗料、中油綠能所提供生質聚氨酯與低黏度環氧樹脂。粗糙度試驗則選用100、240、400、600與1200 mesh拋磨304不鏽鋼表面做為探討。由於沉澱表面物化性的不同影響碳酸鈣成核誘發時間、晶核附著及晶體生長過程,分別以重量變化、沉澱物粒徑與覆蓋率進行分析討論。
腐蝕浸漬實驗以腐蝕速率為依據結果顯示從腐蝕速率從快至慢為鎳基1560 > Duplex 2205  C-276 > Duplex 2507  Duplex 2594。以SEM影像從內部觀察合金耐蝕程度為C-276 > Duplex 2507 > Duplex 2205 > 鎳基1560。塗層實驗結果顯示在短天期內確實會抑制結垢形成,其中以生質聚氨酯有成效最好,然而塗層幾乎都沒有辦法耐70-100℃以上的高溫熱水。最後發現有效減少表面粗糙度,可以有效抑制晶核大量成長和覆著。其中以1200 mesh 拋磨試片表現出具有最佳抗垢效果,其覆蓋率皆維持在10%上下。
Taiwan located at Circum Pacific Volcanic Belt. There is rich geothermal resource caused by volcanic activity and plate convergence. The operation of geothermal power plant was obstacle by corrosion and scaling problems due to the hydrothermal with abundant ions and compounds. This research investigated the material applying to geothermal power plant pipe for corrosion immersion experiment and scaling deposit experiment. The corrosion immersion experiment used the steels of Duplex 2205, Duplex 2507 Duplex 2594, Nickel base C-276 and 1560 to be immersed in acid solution (HCl and H2SO4) for simulating Tatun Volcano hotspring. To obtain corrosion behavior by measurement of corrosion rate and to observe corrosion profile of sample by SEM and EDS were imperative methods. Another experiment for discussing how to prevent precipitation is used the mixing of NaHCO3 and CaCl2. We tried to use coating films of DBX, Polyurethane, low viscosity epoxy CUI-02 in coating materials. The roughness experiments were grinded by abrasive papers with mesh size of 100, 240, 400, 600 and 1200 on 304 stainless steel substrate, respectively. Due to the difference of physicochemical properties of precipitation surface affected nucleation induction time, nuclei attachment and crystal growth process of CaCO3 were analyzed by weight, sediment particle size and the percentage of coverage. The result of this study in corrosion immersion experiment shows the corrosion rate following the orders of 1560 > Duplex 2205  C-276 > Duplex 2507  Duplex 2594. The anti-corrosion ability were in order of C-276 > Duplex 2507 > Duplex 2205 > 1560 according to the SEM observation. The results of scaling deposit experiment, the polyurethane had the great anti-scaling effect in the coating part. However the coating samples could not resistance hydrothermal around 70-100℃. This study confirmed that the treatment surface could inhibit the crystal nuclei growth and coverage percentage, when surface roughness are effectively decreased. In the roughness experiments, the sample grinded by 1200 mesh has the smoothest surface for inhibit scaling which results in a very low coverage percentage maintained about 10%.
目次
摘要 ii
Abstract iii
圖次 vi
表次 viii
第一章、緒論 1
1-1前言 1
1-1-1地熱發展 1
1-2研究動機與目的 3
1-3 前人研究 3
1-3-1 地熱腐蝕研究 3
1-3-2 地熱結垢研究 6
第二章、原理 14
2-1腐蝕 14
2-1-1腐蝕原理 14
2-1-2腐蝕發生過程 15
2-1-4腐蝕測量 19
2-2次生結垢沉澱原理 22
2-2-1結晶機制 22
2-2-2結垢形成 23
2-2-3基材表面影響因子 24
第三章、研究方法與流程 25
3-1研究材料介紹 25
3-1-1實驗材料介紹 25
3-1-2實驗試液 30
3-2實驗方法與步驟 32
3-2-1實驗設備 32
3-2-2實驗分析儀器 35
3-2-4 實驗步驟 40
第四章、實驗結果 42
4-1 合金材料腐蝕浸漬實驗結果 42
4-1-1 重量分析結果 42
4-1-2 SEM影像分析結果 44
4-1-3 EDS分析結果 48
4-2 塗層次生礦物沉澱實驗結果 61
4-2-1 表面沉澱物型態 61
4-2-2重量分析結果 66
4-2-3 沉澱物粒徑結果 67
4-2-4 覆蓋率計算結果 68
4-3 粗糙度因子次生礦物沉澱實驗結果 69
4-3-1 表面型態 69
4-3-2重量分析結果 72
4-3-3 沉澱物粒徑結果 74
4-3-4 覆蓋率計算結果 76
4-4 接觸角測量 77
第五章、討論 78
5-1 合金材料腐蝕浸漬實驗 78
5-1-1 合金材料綜合比較 78
5-1-2 實驗溶液體積與表面積比影響 80
5-2 次生礦物沉澱實驗 82
5-2-1基材表面影響晶體沉澱綜合比較 82
5-2-2重量變化、覆蓋率與粒徑關係 84
5-2-3 基材表面粗糙度與次生礦物沉澱關係 85
5-2-4 沉澱物粒徑分佈 87
第六章、結論 91
第七章、參考文獻 92
American Society for Testing and Materials (Filadelfia, Pennsylvania). (2004). ASTM G31-72: Standard Practice for Laboratory Immersion Corrosion Testing of Metals. ASTM.
ASTM Committee G-1 on Corrosion of Metals. (2011). Standard practice for preparing, cleaning, and evaluating corrosion test specimens. ASTM International.
Baker, J. S., & Judd, S. J. (1996). Magnetic amelioration of scale formation. Water Research, 30(2), 247-260.
Banaś, J., Lelek-Borkowska, U., Mazurkiewicz, B., & Solarski, W. (2007). Effect of CO 2 and H 2 S on the composition and stability of passive film on iron alloys in geothermal water. Electrochimica Acta, 52(18), 5704-5714.
Bohnet, M. (2003). Influence of the transport properties of the crystal/heat transfer surface interfacial on fouling behavior. Chemical engineering & technology, 26(10), 1055-1060.
Bott, T. R. (1995). Fouling of heat exchangers. Elsevier.
Bridges, C. E., & Hobbs, G. W. M. (1987). Corrosion control in the geothermal drilling industry. Mater. Performance;(United States), 26(8).
Cheong, W. C., Gaskell, P. H., & Neville, A. (2013). Substrate effect on surface adhesion/crystallisation of calcium carbonate. Journal of Crystal Growth, 363, 7-21.
Chien, W. C., Tai, C. Y., & Hsu, J. P. (1999). The induction period of the CaCl2–Na2 CO3 system: Theory and experiment. The Journal of chemical physics, 111(6), 2657-2664.
Cho, Y. I., & Choi, B. G. (1999). Validation of an electronic anti-fouling technology in a single-tube heat exchanger. International Journal of Heat and Mass Transfer, 42(8), 1491-1499.
Cho, Y. I., Choi, B. G., & Drazner, B. J. (1998). Electronic anti-fouling technology to mitigate precipitation fouling in plate-and-frame heat exchangers. International journal of heat and mass transfer, 41(17), 2565-2571.
Clark, C. E., Harto, C. B., Sullivan, J. L., & Wang, M. Q. (2011). Water use in the development and operation of geothermal power plants. Argonne National Laboratory. Energy Systems Division, ANL/EVS/R-10, 5.
Clifford, N. J., Richards, K. S., & Robert, A. (1992). The influence of microform bed roughness elements on flow and sediment transport in gravel bed rivers: comment on a paper by Marwan A. Hassan and Ian Reid. Earth Surface Processes and Landforms, 17(5), 529-534.
Coetzee, P. P., Yacoby, M., & Howell, S. (1996). The role of zinc in magnetic and other physical water treatment methods for the prevention of scale. WATER SA-PRETORIA-, 22, 319-326.
Conover, M., Ellis, P., & Curzon, A. (1980). Material selection guidelines for geothermal power systems—an overview. In Geothermal Scaling and Corrosion. ASTM International.
Corsi, R. (1986). Scaling and corrosion in geothermal equipment: problems and preventive measures. Geothermics, 15(5-6), 839-856.
Coto, B., Martos, C., Peña, J. L., Rodríguez, R., & Pastor, G. (2012). Effects in the solubility of CaCO 3: experimental study and model description. Fluid Phase Equilibria, 324, 1-7.
Crabtree, M., Eslinger, D., Fletcher, P., Miller, M., Johnson, A., & King, G. (1999). Fighting scale—removal and prevention. Oilfield review, 11(3), 30-45.
Dalas, E., & Koutsoukos, P. G. (1989). The effect of magnetic fields on calcium carbonate scale formation. Journal of Crystal Growth, 96(4), 802-806.
DeBerry, D. W., Ellis, P. F., & Thomas, C. C. (1978). Materials selection guidelines for geothermal power systems (No. ALO-3904-1). Radian Corp., Austin, TX (USA).
Duggirala, P. Y. (2005). Formation of calcium carbonate scale and control strategies in continuous digesters. CD del II Coloquio Internacional sobre Celulosa de Eucalipto, Concepción, Chile, Mayo.
Eliasson, E. T. (1982). Corrosion in Icelandic high temperature geothermal systems. E. T. Eliasson, RARIK, Akureyri, Iceland, and A. Einarsson, Keykjavik. Corrosion 82/67, NACE, Houston, TX. Per Copy$ 3.
Evanoff, J., Yeager, V., & Spielman, P. (1995, May). Stimulation and damage removal of calcium carbonate scaling in geothermal wells: a case study. In Proceedings of the World Geothermal Congress (Vol. 95, pp. 2481-2485).
Finster, M., Clark, C., Schroeder, J., & Martino, L. (2015). Geothermal produced fluids: Characteristics, treatment technologies, and management options. Renewable and Sustainable Energy Reviews, 50, 952-966.
Förster, M., Augustin, W., & Bohnet, M. (1999). Influence of the adhesion force crystal/heat exchanger surface on fouling mitigation. Chemical Engineering and Processing: Process Intensification, 38(4), 449-461.
Fridleifsson, I. B. (2001). Geothermal energy for the benefit of the people. Renewable and sustainable energy reviews, 5(3), 299-312.
Gallup, D. L. (2009). Production engineering in geothermal technology: a review. Geothermics, 38(3), 326-334.
Gunnlaugsson, E., Ármannsson, H., Þórhallsson, S., & Steingrímsson, B. (2014). Problems in geothermal operation-scaling and corrosion.
Karlsdottir, S. N. (2012). Corrosion, scaling and material selection in geothermal power production.
Karlsdottir, S. N., Ragnarsdottir, K. R., Moller, A., Thorbjornsson, I. O., & Einarsson, A. (2014). On-site erosion–corrosion testing in superheated geothermal steam. Geothermics, 51, 170-181.
Keysar, S., Semiat, R., Hasson, D., & Yahalom, J. (1994). Effect of surface roughness on the morphology of calcite crystallizing on mild steel. Journal of colloid and interface science, 162(2), 311-319.
Liu, Y., Zou, Y., Zhao, L., Liu, W., & Cheng, L. (2011). Investigation of adhesion of CaCO 3 crystalline fouling on stainless steel surfaces with different roughness. International Communications in Heat and Mass Transfer, 38(6), 730-733.
Lund, J. W. (2004). 100 years of geothermal power production.
Lund, J. W., & Boyd, T. L. (2016). Direct utilization of geothermal energy 2015 worldwide review. Geothermics, 60, 66-93.
MacAdam, J., & Parsons, S. A. (2004). Calcium carbonate scale formation and control. Reviews in Environmental Science and Biotechnology, 3(2), 159-169.
Meyer, H. J. (1984). The influence of impurities on the growth rate of calcite. Journal of Crystal Growth, 66(3), 639-646.
Miller, R. L. (1980). Chemistry and materials in geothermal systems. In Geothermal Scaling and Corrosion. ASTM International.
Morizot, A. P., & Neville, A. (2002). Insights into electrodeposition of an inhibitor film and its inhibitive effects on calcium carbonate deposition. Journal of colloid and interface science, 245(1), 40-49.
Mullin, J. W. (2001). Crystallization. Butterworth-Heinemann.
Mundhenk, N., Huttenloch, P., Sanjuan, B., Kohl, T., Steger, H., & Zorn, R. (2013). Corrosion and scaling as interrelated phenomena in an operating geothermal power plant. Corrosion Science, 70, 17-28.
Neville, A., & Morizot, A. P. (2000). A combined bulk chemistry/electrochemical approach to study the precipitation, deposition and inhibition of CaCO 3. Chemical engineering science, 55(20), 4737-4743.
Nogara, J., & Zarrouk, S. J. (2017). Corrosion in geothermal environment Part 2: Metals and alloys. Renewable and Sustainable Energy Reviews.
Nogara, J., & Zarrouk, S. J. (2017). Corrosion in geothermal environment: Part 1: Fluids and their impact. Renewable and Sustainable Energy Reviews.
Ocampo-Diaz, J. D. D., Valdez-Salaz, B., Shorr, M., Sauceda, M., & Rosas-González, N. (2005). Review of corrosion and scaling problems in Cerro Prieto geothermal field over 31 years of commercial operations. In Proceedings of World Geothermal Congress, International Geothermal Association (IGA), Antalya, Turkey.
Parsons, S. A., Wang, B. L., Judd, S. J., & Stephenson, T. (1997). Magnetic treatment of calcium carbonate scale—effect of pH control. Water Research, 31(2), 339-342.
Pátzay, G., Kármán, F. H., & Póta, G. (2003). Preliminary investigations of scaling and corrosion in high enthalpy geothermal wells in Hungary. Geothermics, 32(4), 627-638.
Pernot, B., Euvrard, M., & Simon, P. (1998). Effects of iron and manganese on the scaling potentiality of water. Journal of Water Supply: Research and Technology-Aqua, 47(1), 21-29.
Qian, R. Y., & Botsaris, G. D. (1997). A new mechanism for nuclei formation in suspension crystallizers: the role of interparticle forces. Chemical Engineering Science, 52(20), 3429-3440.
Shannon, D. W. (1977). CORROSION OF IRON-BASE ALLOYS VERSUS ALTERNATE MATERIALS IN GEOTHERMAL BRINES (Interim Report-Period Ending October 1977) (No. PNL-2456). Pacific Northwest National Laboratory (PNNL), Richland, WA (United States).
Viviani, E., Paglianti, A., Sabatelli, F., & Tarquini, B. (1995). Abatement of hydrogen chloride in geothermal power plants. In World Geothermal Congress (pp. 2421-2426).
Volmer, M. (1929). Über keimbildung und keimwirkung als spezialfälle der heterogenen katalyse. Berichte der Bunsengesellschaft für physikalische Chemie, 35(9), 555-561.
Wilson, J. S., King, J. E., & Bullard, G. R. (1978). Study on scale formation and suppression in heat-exchange systems for simulated geothermal brines. Final report, January 12, 1976-March 5, 1978 (No. DOE/ET/28321-T1; COO-2833-1). Dow Chemical USA, Freeport, TX. Texas Div..
Zhao, Q., & Wang, X. (2005). Heat transfer surfaces coated with fluorinated diamond-like carbon films to minimize scale formation. Surface and Coatings Technology, 192(1), 77-80.
陳肇夏. (1989). 台灣的溫泉和地熱,地質,第9卷,第2期,第327-340頁
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔