跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/20 13:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李柏逸
研究生(外文):Lee, Po-I
論文名稱:溶膠凝膠法製備特殊表面形貌之氧化鋯薄膜及其光學性質之關係研究
論文名稱(外文):Relationship between Specific Surface Morphology and Optical Properties of Zirconia Films Prepared by Sol-Gel Method
指導教授:黃榮潭
指導教授(外文):Huang, Rong-Tan
口試委員:張高碩郭承憲梁元彰
口試委員(外文):Chang, Kao-ShuoKuo, Cheng-HsienLiang, Yuan-Chang
口試日期:2018-07-27
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:78
中文關鍵詞:氧化鋯薄膜表面形貌光致發光光催化
外文關鍵詞:zirconia thin filmsurface morphologyphotoluminescencephotocatalysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用溶膠凝膠法製備奈米氧化鋯薄膜,過程中添加5 % PVA以增加溶液的黏滯性,並使用旋轉塗佈(Spinning coating)鍍膜,再鍍膜完成時放置於加熱盤上進行30ºC、70ºC、90ºC的加溫約30分鐘,分別成功製備出平整、編織狀(basket-wave-like)與網狀(network)氧化鋯薄膜,之後在大氣中進行400ºC、500ºC、600ºC的鍛燒,並將鍛燒完成後的樣品進行顯微結構分析與光學實驗檢測,以探討不同表面形貌和不同溫度鍛燒下的光學性質差異。本實驗使用X光繞射儀檢測其相組成並計算晶粒尺寸、掃描式電子顯微鏡觀察形貌、光致發光光譜儀檢測各樣品的光致發光強度以進行比較、光催化實驗測量樣品在不同降解時間下對亞甲基藍液的降解程度、原子力顯微鏡檢測不同形貌的粗糙度。
實驗結果顯示,透過SEM分析觀察到在加熱盤上進行加熱會使得氧化鋯膠粒產生團聚,以產生出三種不同的形貌,分別為平整、編織狀、網狀。在大氣400ºC和500ºC鍛燒後,氧化鋯薄膜皆為四方晶相,但在600ºC鍛燒後會有單斜晶相的產生。在光致發光實驗中400ºC擁有最高的光致發光強度,光致發光強度會隨著鍛燒溫度升高而降低,而在不同的形貌中,平整與網狀擁有比編織狀更高的光致發光強度。在光催化實驗中,結果顯示編織狀與網狀形貌氧化鋯薄膜因擁有較大的比表面積進行反應,因此其降解率皆比平整氧化鋯薄膜較來的好。此外,光降解率會隨溫度提高而降低。在400ºC鍛燒下編織狀形貌氧化鋯薄膜的降解率可達近乎80%。
This thesis is to synthesize nano-scale tetragonal zirconia (t-ZrO2) thin films using the sol-gel method with 5% PVA addition for increasing the adhesion of sol-gel solutions. The sol-gel solutions were subsequently spinning-coated on silicon substrates. Three specific surface morphologies, flat, basket-wave-like and network were successfully produced after baking on a hot plate separately at 30ºC, 70ºC and 90ºC for 30 min. Furthermore, these zirconia thin films were calcined at 400ºC, 500ºC and 600ºC for 2 hr in air. The calcined specimens are examined the microstructure analysis and optics properties to study the variation of the thin film with distinct surface morphology under various calcination temperatures using x-ray diffractometer (XRD), scanning electron microscope (SEM), photoluminescence (PL), photocatalysis and atomic force microscopy (AFM). Meanwhile, the crystalline sizes of t-ZrO2 in thin films were evaluated with Scherrer equation from the XRD results, and the photodegrdation time of ZrO2 thin films with distinct surface morphologies in methylene blue (MA) solution were also tested.
The results shows that the flat, basket-wave-like and network morphologies are formed after baking on a hot plate separately at 30ºC, 70ºC and 90ºC for 30 min, respectively. The formation of the specific surface morphologies are attributed to the agglomeration of ZrO2-gel particles during baking. The microstructures of ZrO2 thin films after calcining at 400ºC and 500ºC both exhibited tetragonal phase, but monoclinic phase also formed in the ZrO2 thin film after 600ºC calcination. The thin film with flat morphology calcined at 400ºC showed the high PL intensity. Moreover, the PL intensity of the specimens decreased with increasing calcination temperatures, in which the thin films of flat and network morphologies displayed higher PL intensity than that of basket-wave-like morphology. For photocatalysis characterization, the basket-wave-like and network morphologies specimens both showed better photodegrdation than the flat morphology specimen. Because the basket-wave-like and network morphologies specimens exhibit larger surface roughness from AFM analysis, the two morphologies have larger surface defects leading to better photodegrdation. Besides, photodegradation degree decreased with increasing calcination temperatures. The photodegradation ratio of the ZrO2 thin film with basket-wave-like morphology calcined at 400ºC could reach to near 80%.
致謝 I
摘要 II
Abstract III
表目錄 VII
圖目錄 VIII
第一章 緒論 1
第二章 文獻回顧 3
2.1 氧化鋯基本性質 3
2.2 四方晶相氧化鋯介穩機制 7
2.2.1 表面能(surface energy)與相變化尺寸效應之關係 7
2.2.2 界面能與相變化尺寸效應之關係 11
2.2.3 外部靜水壓力與相變化尺寸效應之關係 12
2.2.4 水氣環境 16
2.2.5 摻雜陰離子 16
2.2.6 氧離子空缺 18
2.3 碳物質對於氧化鋯的影響 23
2.4 溶膠凝膠法變因對氧化鋯形貌、性質之影響 26
2.4.1 基本介紹 26
2.4.2 製備程序 29
2.4.3 參數選擇 31
2.5 影響氧化鋯薄膜性質之因素 31
2.5.1 薄膜厚度 31
2.5.2 表面缺陷及氧空缺 32
2.5.3 多層結構 32
2.5.4 穿透率與折射率 33
2.5.5 粒徑大小變化 33
2.5.6 溶膠濃度 34
2.5.7 應力殘留 34
第三章 實驗流程與方式 35
3.1 實驗介紹 35
3.1.1 實驗藥品 35
3.1.2 實驗儀器設備 36
3.2 實驗流程 36
3.3 分析方式 38
3.3.1 場發射掃描式電子顯微鏡(FE-SEM) 38
3.3.2 X光繞射儀(XRD) 38
3.3.3 光致發光光譜儀(PL) 39
3.3.4 光催化 39
3.3.5 原子力顯微鏡(AFM) 40
3.3.6 電子微探儀(EPMA) 40
第四章 結果與討論 45
4.1 特殊表面形貌氧化鋯薄膜之製備 45
4.2 特殊表面形貌氧化鋯薄膜之特性分析 56
4.2.1 XRD量測 56
4.2.2 PL量測 58
4.2.3 AFM量測結果 60
4.2.4 光催化 63
4.2.5 接觸角 67
4.3 討論 69
第五章 結論 76
第六章 未來研究方向 77
參考文獻 78
[1] S. Shukla and S. Seal, International Materials Reviews, 50 (2005) 45-64.
[2] S. Venkataraj, Oliver Kappertz, Hansjörg Weis, Robert Drese, R. Jayavel and Matthias Wuttig, Journal of Applied Physics, 92 (2002) 3599-3607.
[3] L. J. Lai, H. C. Lu, H .K. Chen, B. M. Cheng, M. I. Lin and T. C. Chu, J Electron Spectrosc Relat Phenom, 144 (2005) 865.
[4] J. Gottmann, A. Husmann, T. Klotzbucher and E. W. Kreutz, Surface and Coatings Technology, 100-101 (1998) 415-419.
[5] Y. Ji, X. Zhang, X. Wang, Z. Che, X. Yu and H. Yang, Rev. Adv. Mater. Sci, 34 (2013) 72-78.
[6] C. Piconi and G. Maccauro, Biomaterials, 20 (1999) 1-25.
[7] M. Kirm, J. Aarik, M. Jurgens and I. Sildos, Nucl. Instrum. Methods Phys. Res. A, 537 (2005) 251-255.
[8] L. A. Peyser, A. E. Vinson, A. P. Bartko and R. M. Dickson, Science, 291 (2001) 103-106.
[9] Chevalier J and Gremillardw L, J Am Ceram Soc, 92 (2009) 1901–1920.
[10] S. Tekeli, A. Akçimen, O. Gürdal and M. Gürü, Journal of Achievements in Materials and Manufacturing Engineering, 25 (2007) 39-42.
[11] K. Tanabe and T. Yamaguchi, Catalysis Today, 20 (1994) 185-197.
[12] X. J. Jin, Current Opinion in Solid State and Materials Science, 9 (2005) 313-318.
[13] K. Arata: Solid Superacids, 37 (1990) 165-211.
[14] X. Lei, L. Wang, Z. Cui, S. Xu, and F. Zhang, Thin Solid Films, 519 (2011) 3552-3556.
[15] G. Balakrishnan, P. Kuppusami, D. Sastikumar, and J. Song, Nanoscale Research Letters, 8 (2013) 1-7.
[16] J. R. Vargas Garcia and T. Goto, Science and Technology of Advanced Materials, 4 (2003) 397-402.
[17] V. K. Balla, P. P. Bandyopadhyay, S. Bose and A. Bandyopadhyay, Scripta Materialia, 57 (2007) 861-864.
[18] I. Espitia-Cabrera, H. Orozco-Hernández, R. Torres-Sánchez, M. Contreras-Garcıa, P. Bartolo-Pérez, and L. Martınez, Materials Letters, 58 (2004) 191-195.
[19] Z. Chen, N. Prud'homme, B. Wang, P. Ribot, and V. Ji, Journal of Nanoscience and Nanotechnology, 11 (2011) 8264-8268.
[20] S. M. Chang and R. A. Doong, Thin Solid Films, 489 (2005) 17-22.
[21] Challa S. S. R. Kumar: Nanomaterials—Toxicity, Health and Environmental Issues, Wiley-VCH,Weinhem, 2006.
[22] L. J. Lai, H. C. Lua, H. K. Chen, B. M. Cheng, M. I. Lin and T. C. Chu, J Electron Spectrosc RelatPhenom, 144 (2005) 865.
[23] S. Venkataraj, Oliver Kappertz, Hansjörg Weis, Robert Drese, R. Jayavel and Matthias Wuttig, J. Appl.Phys., 92 (2002) 3599-3607.
[24] S. Zinatloo-Ajabshir and M. Salavati-Niasari, Ceram. Int., 41 (2015) 567-575.
[25] E. Ryshkewitch: Oxide Ceramics Physical Chemistry and Technology, Academic Press, 1960.
[26] R. C. Garvie: Refractory Materials, 5 (1970) 117-166.
[27] R. C. Garvie, R. H. Hannink and R. T. Pascoe, Nature, 258 (1975) 703-704.
[28] E. H. Kisi and C. J. Howard, Key Engineering Materials, 153-154 (1998) 1-36.
[29] 陶瓷技術手冊: 粉末冶金協會出版, 1999.
[30] T. Chraska, A. H. King, and C. C. Berndt, Materials Science and Engineering: A, 286 (2000) 169-178.
[31] R. C. Garvie and M. F. Goss, Journal of Materials Science, 21 (1986) 1253-1257.
[32] L. Look and C. F. Zukoski, J. Am Ceram. Soc., 75 (6) (1992) 1587-1595.
[33] H. C. Yao, X. W. Wang, H. Dong, R. R. Pei, J. S. Wang, and Z. J. Li, Ceramics International, 37 (2011) 3153-3160.
[34] R. C. Garvie, The Journal of Physical Chemistry, 69 (1965) 1238-1243.
[35] M. Tahmasebpour, A. A. Babaluo and M. K. R. Aghjeh, Journal of the European Ceramic Society, 28 (2008) 773-778.
[36] S. Wang, X. Li, Y. Zhai and K. Wang, Powder Technology, 168 (2006) 53-58.
[37] J. Livage, Catalysis Today, 41 (1998) 3-19.
[38] Y. L. Zhang, X. J. Jin, Y. H. Rong, T. Y. Hsu, D. Y. Jiang and J. L. Shi, Materials Science and Engineering: A, 438–440 (2006) 399-402.
[39] Z. Zhan and H. C. Zeng, Journal of Materials Research, 13 (1998) 2174-2183.
[40] R. C. Garvie, The Journal of Physical Chemistry, 82 (1978) 218-224.
[41] P. E. D. Morgan, Journal of the American Ceramic Society, 67 (1984) C204-C205.
[42] S. Shukla, S. Seal and S. R. Mishra, Journal of Sol-Gel Science and Technology, 23 (2002) 151-164.
[43] P. Li, I. W. Chen and J. E. Penner-Hahn, Physical Review B, 48 (1993) 10063-10073.
[44] O. Ohtaka, T. Yamanaka, S. Kume, E. Ito and A. Navrotsky, Journal of the American Ceramic Society, 74 (1991) 505-509.
[45] M. Winterer, R. Nitsche, S. A. T. Redfern, W. W. Schmahl and H. Hahn, Nanostructured Materials, 5 (1995) 679-688.
[46] E. Subbarao: Advances in ceramics, vol. 1 (1981) 1-24.
[47] Y. Murase and E. Kato, Journal of the American Ceramic Society, 62 (1979) 527-527, 1979.
[48] Y. Murase and E. Kato, Journal of the American Ceramic Society, 66 (1983) 196-200.
[49] R. Cypres, R. Wollast and J. Raucq, Ber. Deut. Keram. Ges., 40 (1963) 527-532.
[50] S. Gutzov, J. Ponahlo, C. L. Lengauer and A. Beran, Journal of the American Ceramic Society, 77 (1994) 1649-1652.
[51] C. J. Normair, P. A. Goulding and I. McAlpine, Catalysis Today, 20 (1994) 313-321.
[52] Feng Chau Wu and Shu Cheng Yu, Journal of Materials Science, 25 (1990) 970-976.
[53] K. M. Parida and P. K. Pattnayak, Journal of Colloid and Interface Science, 182 (1996) 381-387.
[54] T. Mitsuhashi, M. Ichihara and U. Tatsuke, Journal of the American Ceramic Society, 57 (1974) 97-101.
[55] A. Clearfield, Inorganic Chemistry, 3 ( 1964) 146-148.
[56] Y. Kanno, Journal of Materials Science, 25 (1990) 1987-1990.
[57] M. Li, Z. Feng, G. Xiong, P. Ying, Q. Xin and C. Li, The Journal of Physical Chemistry B, 105 (2001) 8107-8111.
[58] R. Srinivasan, C. R. Hubbard, O. B. Cavin and B. H. Davis, Chemistry of Materials, 5 (1993) 27-31.
[59] M. I. Osendi, J. S. Moya, C. J. Serna and J. Soria, Journal of the American Ceramic Society, 68 (1985) 135-139.
[60] N. Igawa, Y. Ishii, T. Nagasaki, Y. Morii, S. Funahashi and H. Ohno, Journal of the American Ceramic Society, 76 (1993) 2673-2676.
[61] N. Igawa and Y. Ishii, Journal of the American Ceramic Society, 84 (2001) 1169-1171.
[62] R. Gómez, T. López, X. Bokhimi, E. muñoz, J. L. boldú and O. Novaro, Journal of Sol-Gel Science and Technology, 11 (1998) 309-319.
[63] H. W. Liu, L. B. Feng, X. S. Zhang and Q. J. Xue, Journal of Physical Chemistry, 99 (1995) 332-334.
[64] G. Skandan, H. Hahn, M. Roddy and W. R. Cannon, "Ultrafine-Grained Dense Monoclinic and Tetragonal Zirconia," Journal of the American Ceramic Society, 77 (1994) 1706-1710.
[65] D. E. Collins and K. J. Bowman, Journal of materials research, 13 (1998) 1230-1237.
[68] M. K. Asgarani, A. Saidi and M. H. Abbasi, Powder Metallurgy, 54 (2011) 127-132.
[69] S. Jana and P. K. Biswas, Materials Letters, 30 (1997) 53-58.
[70] M. Uehara, B. Barbara, B. Dieny and P. Stamp, Physics Letters A, 114 (1986) 23-26.
[71] Y. Wang, K. Lu, D. Wang, Z. Wu and Z. Fang, Journal of Physics: Condensed Matter, 6 (1994) 633-640.
[72] C. Zhang, C. Li, J. Yang, Z. Cheng, Z. Hou, Y. Fan and J. Lin, Langmuir, 25 (2009) 7078-7083.
[73] Z. Q. Xue and Y. Q. Guo, Advanced Materials Research, 936 (2014) 181-186.
[74] X. Li, Y. Shimizu, A. Pyatenko, H. Wang and N. Koshizaki, Nanotechnology, 23 (2012) 115602 (8pp).
[75] J. P. Neeft, M. Makkee and J. A. Moulijn, Fuel, 77 (1998) 111-119.
[76] Y. Liu, W. Chi, H. Liu, Y. Su and L. Zhao, RSC Advances, 5 (2015) 34451-34455.
[77] N. Laidani, V. Micheli and M. Anderle, Thin solid films, 382 (2001) 23-29.
[78] G. Mul, W. Zhu, F. Kapteijn and J. A. Moulijn, Applied Catalysis B: Environmental, 17 (1998) 205-220.
[79] G. Mul, F. Kapteijn, C. Doornkamp and J. A. Moulijn, Journal of Catalysis, 179 (1998) 258-266.
[80] H. Xiang, X. Lu, J. Li, J. Chen and Y. Zhou, Ceramics International, 40 (2014) 5645-5651.
[81] M. D. Sacks, C. A. Wang, Z. Yang and A. Jain, Journal of Materials Science, 39 (2004) 6057-6066.
[82] D. Wang and K. Liang, Journal of materials science letters, 17 (1998) 343-344.
[83] Y. Yan, Z. Huang, X. Liu and D. Jiang, Journal of Sol-Gel Science and Technology, 44 (2007) 81-85.
[84] M. V. Landau, Sol-Gel Processing, Synthesis of Solid Catalysts, Wiley, (2009) 83-109.
[85] W. Zhang, G. Ji, A. Bu and B. Zhang, Appl. Mater. Interfaces, 7 (2015) 28264-28272.
[86] K. Natori, D. Otani and N. Sano, Appl. Phys. Lett., 73 (1998) 632-634.
[87] K. Kato, T. Saito, S. Shibayama, M. Sakashita, W. Takeuchi, N. Taoka, O. Nakatsuka and S. Zaima, Thin Solid Film, 557 (2014) 192-196.
[88] J. S. Lakshmi, I. John Berlin, Georgi P. Daniel, P.V. Thomas and K. Joy, Physica B, 406 (2011) 3050-3055.
[89] K. Joy, I. John Berlin, Prabitha B. Nair, J. S. Lakshmi, Georgi P. Daniel and P. V. Thomas, Journal of Physics and Chemistry of Solids, 72 (2011) 673-677.
[90] I. John Berlin, J. S. Lakshmi, S. S. Lekshmy, Georgi P. Daniel, P. V. Thomas, and K. Joy, Journal of Sol-Gel Science and Technology, 58 (2011) 669-676.
[91] X. D. Wang, G. M. Wu, B Zhou and Jun Shen, Journal of Alloys and Compounds, 556 (2013) 182-187.
[92] H. L. Tuller, Solid State Ionics, 131 (2000) 143-157.
[93] S. M. Chang and R. A. Doong, Thin Solid Film, 498 (2005) 17.
[94] Y. J. Lin and J. F. Yu, Journal of Non-Crystalline Solids, 426 (2015) 132-136.
[95] P. Thompson, D. Cox and J. Hastings, Journal of Applied Crystallography, 20 (1987) 79-83.
[96] B. Cullity Deceased and S. Stock: Elements of X-ray Diffraction, ed: New Jersey: Prentice Hall, 2001.
[97] K. Anandan and K. Rajesh and V. Rajendran, Springer Science+Business Media New York 2017, 28 (2017) 13420-13425.
[98] M. Jothibas, C. Manoharan, S. Johnson Jeyakumar, P. Praveen and I. Joseph Panneerdoss, J Mater Sci: Mater Electron, 27 (2016) 5851–5859.
[99] X. Wang, G. Wu, B. Zhou and J. Shen, Journal of Alloys and Compounds, 556 (2013) 182–187.
[100] Kumar CSSR: "Nanomaterials—Toxicity, Health and Environmental Issues." Wiley-VCH, Weinhem, (2006).
[101] I. John Berlin, S. Sujatha lekshmy, V.Ganesan, P.V. Thomas and K. Joy, Thin Solid Films, 550 (2014) 199–205.
[102] I. John Berlin, J. S. Lakshmi, S. Sujatha Lekshmy, Georgi P. Daniel, P. V. Thomas and K. Joy, Journal of Sol-Gel Science and Technology, 58 (2011) 669–676.
[103] A. R. Wilkinson and R. G. Elliman, Journal of Applied Physics, 96 (2004) 4018-4020.
[104] K. Joy, I. John Berlin, Prabitha B. Nair, J. S. Lakshmi, Georgi P. Daniel and P. V. Thomas, Journal of Physics and Chemistry of Solids, 72 (2011) 673–677.
[105] V. S. Anitha, S. Sujatha Lekshmy, K. Joy, J Mater Sci: Mater Electron, 28 (2017) 10541–10554.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top