|
[1] Sabir, I.; Khavandi, K.; Brownrigg, J.; Camm, A. Oral Anticoagulants for Asian Patients with Atrial Fibrillation. Nat. Rev. Cardiol. 2014, 11, 290303. [2] Owens A, P.; Mackman, N. Tissue Factor and Thrombosis: The Clot Starts Here. Thromb. Haemost. 2010, 104, 432439. [3] Wheeler, A. P.; Gailani, D. The Intrinsic Pathway of Coagulation as a Target for Antithrombotic Therapy. Hematol. Oncol. Clin. North Am. 2016, 30, 10991114. [4] Lu, G. M.; Lin, J.; Curnutte, J. T.; Conley, P. B. Reversal of Heparin-Induced Anticoagulation by Andexanet Alfa, a Universal Antidote for Factor Xa Inhibitors. Blood 2015, 126, 23292337. [5] Mega, J. L.; Simon, T. Pharmacology of Antithrombotic Drugs: An Assessment of Oral Antiplatelet and Anticoagulant Treatments. Lancet. 2015, 286, 281291. [6] Rashid, Q.; Abid, M.; Jairajpuri, M. A. Elucidating the Specificity of Non-Heparin-Based Conformational Activators of Antithrombin for Factor Xa Inhibition. J. Nat. Sci. Biol. Med. 2014, 5, 3642. [7] Sankarayanarayanan, N. V.; Strebel, T. R.; Boothello, R. S.; Sheerin, K.; Raghuraman, A.; Sallas, F.; Mosier, P. D.; Watermeyer, N. D.; Oscarson, S.; Desai, U. R. A Hexasaccharide Containing Rare 2-O-Sulfate-Glucuronic Acid Residues Selectively Activates Heparin Cofactor II. Angew. Chem. Int. Ed. 2017, 56, 17. [8] Vityazev, F. V.; Golovchenko, V. V.; Patova, O. A.; Drozd, N. N.; Makarov, V.A.; Shashkov, A. S.; Ovodov, Y. S. Synthesis of Sulfated Pectins and Their Anticoagulant Activity. Biochem.-Moscow 2010, 75, 759768. [9] Norgren, L. Can Low Molecular Weight HeparinReplace Unfractionated Heparin During Peripheral Arterial Reconstruction? An Open Label Prospective Randomized Controlled Trial. J. Vasc. Surg. 2004, 39, 977984. [10] Petitou, M.; Herault, L. P.; Bernat, A.; Driguez, P. A.; Duchaussoy, P.; Lormeau, J. C.; Herbert, J. M. Synthesis of Thrombin-Inhibiting Heparin Mimetics Without Side Effects. Nature 1999, 398, 417422. [11] Raposo, M. F. D.; de Morais, A. M. B.; de Morais, R. M. S. C. Marine Polysaccharides from Algae with Potential Biomedical Applications. Mar. Drugs 2015, 13, 29673028. [12] Cunha, L.; Grenha, A. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications. Mar. Drugs 2016, 14, 42. [13] Schaeffer, D. J.; Krylov, V. S. Anti-HIV Activity of Extracts and Compounds from Algae and Cyanobacteria. Ecotox. Environ. Safe. 2000, 45, 208227. [14] Lahaye, M.; Robic, A. Structure and Functional Properties of Ulvan, a Polysaccharide from Green Seaweeds. Biomacromolecules 2007, 8, 17651774. [15] Guerra-Rivas, G.; Gomez-Gutierrez, C. M.; Alarcon-Arteaga, G.; Soria-Mercado, I. E.; Ayala-Sanchez, N. E. Screening for Anticoagulant Activity in Marine Algae from the Northwest Mexican Pacific Coast. J. Appl. Phycol. 2011, 23, 495503. [16] Jiao, G. L.; Yu, G. L.; Zhang, J. Z.; Ewart, H. S. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae. Mar. Drugs 2011, 9, 196223. [17] Mohamed, S.; Hashim, S. N.; Rahman, H. A. Seaweeds: A Sustainable Functional Food for Complementary and Alternative Therapy. Trends Food Sci. Technol. 2012, 23, 8396. [18] Collins, K. G.; Fitzgerald, G. F.; Stanton, C.; Ross, R. P. Looking Beyond the Terrestrial: The Potential of Seaweed Derived Bioactives to Treat Non-Communicable Diseases. Mar. Drugs 2016, 14. [19] Barros, C. D.; Cirne-Santos, C. C.; Garrido, V. Barcelos, I.; Stephens, P. R. S.; Giongo, V.; Teixeira, V. L.; Paixao, I. C. N. D. Anti-HIV-1 Activity of Compounds Derived from Marine Alga Canistrocarpus Cervicornis. J. Appl. Phycol. 2016, 28, 25232527. [20] Faggio, C.; Pagano, M.; Dottore, A.; Genovese, G.; Morabito, M. Evaluation of Anticoagulant Activity of Two Algal Polysaccharides. Nat. Prod. Res. 2016, 30, 19341937. [21] Kang, K.; Park, Y.; Hwang, H. J.; Kim, S. H.; Lee, J. G.; Shin, H. C. Antioxidative Properties of Brown Algae Polyphenolics and Their Perspectives as Chemopreventive Agents against Vascular Risk Factors. Arch. Pharm. Res. 2003, 26, 286293. [22] Chandini, S. K.; Ganesan, P.; Bhaskar, N. In Vitro Antioxidant Activities of Three Selected Brown Seaweeds of India. Food Chem. 2008, 107, 707713. [23] Duan, X. J.; Zhang, W. W.; Li, X. M.; Wang, B. G. Evaluation of Antioxidant Property of Extract and Fractions Obtained from a Red Alga, Polysiphonia Urceolata. Food Chem. 2006, 95, 3743. [24] Zhang, Z.; Wang, F.; Wang, X.; Liu, X.; Hou, Y.; Zhang, Q. Extraction of the Polysaccharides from Five Algae and their Potential Antioxidant Activity in Vitro. Carbohydr. Polym. 2010, 82, 118121. [25] Yamasaki-Miyamoto, Y.; Yamasaki, M.; Tachibana, H.; Yamada, K. Fucoidan Induces Apoptosis through Activation of Caspase-8 on Human Breast Cancer MCF-7 Cells. J. Agric. Food Chem. 2009, 57, 86778682. [26] Ye, J.; Li, Y. P.; Teruya, K.; Katakura, Y.; Ichikawa, A.; Eto, H.; Hosoi, M.; Hosoi, M.; Nishimoto, S.; Shirahata, S. Enzyme-Digested Fucoidan Extracts Derived from Seaweed Mozuku of Cladosiphon Novae-Caledoniae Kylin Inhibit Invasion and Angiogenesis of Tumor Cells. Cytotechnology 2005, 47, 117126. [27] Guo, T. T.; Xu, H. L.; Zhang, L. X.; Zhang, H. P.; Guo, Y. F.; Gu, J. W.; He, P. M. In Vivo Protective Effect of Porphyra Yezoensis Polysaccharide against Carbon Tetrachloride Induced Hepatotoxicity in Mice. Regul. Toxicol. Pharmacol. 2007, 49, 101106. [28] Ni, A. G.; Agata, J.; Yang, Z.; Chao, R.; Chao, J. Overexpression of Kinin B-1 Receptors Induces Hypertensive Response to Des-Arg(9)-Bradykinin and Susceptibility to Inflammation. J. Biol. Chem. 2003, 278, 219225. [29] Wijesekara, I.; Pangestuti, R.; Kim, S. K. Biological Activities and Potential Health Benefits of Sulfated Polysaccharides Derived from Marine Algae. Carbohydr. Polym. 2011, 84, 1421. [30] Buck, C. B.; Thompson, C. D.; Roberts, J. N.; Muller, M.; Lowy, D. R.; Schiller, J. T. Carrageenan is a Potent Inhibitor of Papillomavirus Infection. PLoS Pathog. 2006, 2, 671680. [31] Talarico, L. B.; Pujol, C. A.; Zibetti, R. G. M.; Faria, P. C. S.; Noseda, M. D.; Duarte, M. E. R.; Damonte, E. B. The Antiviral Activity of Sulfated Polysaccharides against Dengue Virus is Dependent on Virus Serotype and Host Cell. Antiviral Res. 2005, 66, 103110. [32] Caceres, P. J.; Carlucci, M. J.; Damonte, E. B.; Matsuhiro, B.; Zuniga, E. A. Carrageenans from Chilean Samples of Stenogramme Interrupta (Phyllophoraceae): Structural Analysis and Biological Activity. Phytochemistry 2000, 53, 8186. [33] Zayed, A.; Muffler, K.; Hahn, T.; Rupp, S.; Finkelmeier, D.; Burger-Kentischer, A.; Ulber, R. Physicochemical and Biological Characterization of Fucoidan from Fucus vesiculosus Purified by Dye Affinity Chromatography. Mar. Drugs 2016, 14, 79. [34] Soares, A. R.; Abrantes, J. L.; Souza, T. M. L.; Fontes, C. F. L.; Pereira, R. C.; Frugulhetti, I. C. D. P.; Teixeira, V. L. In Vitro Antiviral Effect of Meroditerpenes Isolated from the Brazilian Seaweed Stypopodium Zonale (Dictyotales). Planta Med. 2007, 73, 12211224. [35] Wang, H.; Ooi, E.; Ang, P. O. Antiviral Activities of Extracts from Hong Kong Seaweeds. J. Zhejiang Univ. 2008, 9, 969976. [36] Cao, Y. G.; Hao, Y.; Li, Z. H.; Liu, S. T.; Wang, L. X. Antiviral Activity of Polysaccharide Extract from Laminaria japonica against Respiratory Syncytial Virus. Biomed. Pharmacother. 2016, 84, 17051710. [37] Eyre, H.; Kahn, R.; Robertson, R. M. Preventing Cancer, Cardiovascular Disease, and Diabetes - A Common Agenda for the American Cancer Society, the American Diabetes Association, and the American Heart Association. Stroke 2004, 35, 19992010. [38] Azab, W.; Tsujimura, K.; Maeda, K.; Kobayashi, K.; Mohamed, Y. M .; Kato, K.; Matsumura, T.; Akashi, H. Glycoprotein C of Equine Herpesvirus 4 Plays a Role in Viral Binding to Cell Surface Heparan Sulfate. Virus Res. 2010, 151, 19. [39] Miao, C. H.; Li, M. H.; Zheng, Y. M.; Cohen, F. S.; Liu, S. L. Cell-Cell Contact Promotes Ebola Virus GP-Mediated Infection. Virology 2016, 488, 202215. [40] Esnault, C.; Heidmann, O.; Delebecque, F.; Dewannieux, M.; Ribet, D.; Hance, A. J.; Heidmann, T.; Schwartz, O. APOBEC3G Cytidine Deaminase Inhibits Retrotransposition of Endogenous Retroviruses. Nature 2005, 433, 430433. [41] Zheng, D. H.; Chen, H.; Bartee, M. Y.; Williams, J.; Davids, J. A.; Huang, E. N.; Moreb, J.; Lucas, A. Virus-Derived Anti-Inflammatory Proteins: Potential Therapeutics for Cancer. Trends Mol. Med. 2012, 18, 304310. [42] Kim, S. K.; Wijesekara, I. Anticoagulant Effect of Marine Algae. Adv. Food. Nutr. Res. 2011, 64, 235244. [43] Pomin, V. H.; Mourao, P. A. S. Structure, Biology, Evolution, and Medical Importance of Sulfated Fucans and Galactans. Glycobiology 2008, 18, 10161027. [44] Ciancia, M.; Quintana, I.; Cerezo, A. S. Overview of anticoagulant activity of Sulfated Polysaccharides from Seaweeds in Relation to their Structures, Focusing on those of Green Seaweeds. Curr. Med. Chem. 2010, 17, 25032529. [45] Magalhaes, K. D.; Costa, L. S.; Fidelis, G. P.; Oliveira, R. M.; Nobre, L. T. D. B.; Dantas-Santos, N.; Camara, R. B. G.; Albuquerque, I. R. L.; Cordeiro, S. L.; Sabry, D. A.; Costa, M. S. S. P.; Alves, L. G.; Rocha, H. A. O. Anticoagulant, Antioxidant and Antitumor Activities of Heterofucans from the Seaweed Dictyopteris delicatula. Int. J. Mol. Sci. 2011, 12, 33523365. [46] Camara, R. B. G.; Costa, L. S.; Fidelis, G. P.; Nobre, L. T. D. B.; Dantas-Santos, N.; Cordeiro, S. L.; Costa, M. S. S. P.; Alves, L. G.; Rocha, H. A. O. Heterofucans from the Brown Seaweed Canistrocarpus cervicornis with Anticoagulant and Antioxidant Activities. Mar. Drugs 2011, 9, 124138. [47] Cumashi, A.; Ushakova, N. A.; Preobrazhenskaya, M. E.; D'Incecco, A.; Piccoli, A.; Totani, L.; Tinari, N.; Morozevich, G. E.; Berman, A. E.; Bilan, M. I.; Usov, A. I.; Ustyuzhanina, N. E.; Grachev, A. A.; Sanderson, C. J.; Kelly, M.; Rabinovich, G. A.; Iacobelli, S.; Nifantiev, N. E. A Comparative Study of the Anti-Inflammatory, Anticoagulant, Antiangiogenic, and Antiadhesive Activities of Nine Different Fucoidans from Brown Seaweeds. Glycobiology 2007, 17, 541552. [48] Gracher A. H. P.; Santana, A. G.; Cipriani, T. R.; Lacomini. M. A Procoagulant Chemically Sulfated Mannan. Carbohydr. Polym. 2015, 136, 177186. [49] Fan, L. H.; Jiang, L.; Xu, Y. M.; Zhou, Y.; Shen, Y. A.; Xie, W. G.; Long, Z. H.; Zhou, J. P. Synthesis and Anticoagulant Activity of Sodium Alginate Sulfates. Carbohydr. Polym. 2011, 83, 17971803. [50] Zia, F.; Zia, K. M.; Zuber, M.; Ahmad, H. B.; Muneer, M. Glucomannan Based Polyurethanes: A Critical Short Review of Recent Advances and Future Perspectives. Int. J. Biol. Macromol. 2016, 87, 229236. [51] Muschin, T.; Budragchaa, D.; Kanamoto, T.; Nakashima, H.; Ichiyama, K.; Yamamoto, N.; Shuqin, H.; Yoshida, T. Chemically Sulfated Natural Galactomannans with Specific Antiviral and Anticoagulant Activities. Int. J. Biol. Macromol. 2016, 89, 415420. [52] Drozd, N. N.; Torlopov, M. A.; Kuzhim, A. A.; Makarov, V. A. Dependence of the Anticoagulant Activity of Starch and Inulin on Their Degree of Sulfonation. Eksp. Klin. Farmakol. 2012, 75, 3135. [53] Guo, L.; Yang, Y. L.; Yang, T.; Liu, Z. H..; Feng, S. L. Sulfated Modification and Anticoagulant Activity in Vitro of Sulfated Glucan Isolated from the Aqueous Extract of Hedysarum Polybotrys. Acta. Pharmacol. Sin. 2013, 48, 16651670. [54] Arlov, O.; Skjak-Braek, G. Sulfated Alginates as Heparin Analogues: A Review of Chemical and Functional Properties. Molecules 2017, 22, 778788. [55] Ilinskaya, A. N.; Dobrovolskaia, M. A. Nanoparticles and the Blood Coagulation System. Part I: Benefits of Nanotechnology. Nanomedicine 2013, 8, 773784. [56] Argyo, C.; Cauda, V.; Engelke, H.; Radler, J.; Bein, G.; Bein, T. Heparin-Coated Colloidal Mesoporous Silica Nanoparticles Efficiently Bind to Antithrombin as an Anticoagulant Drug-Delivery System. Chem. 2012, 18, 428432. [57] Shiang, Y.-C.; Hsu, C.-L.; Huang, C.-C.; Chang, H.-T. Gold Nanoparticles Presenting Hybridized Self-Assembled Aptamers that Exhibit Enhanced Inhibition of Thrombin. Angew. Chem. Int. Ed. 2011, 50, 76607665. [58] Ehmann, H. M. A.; Breitwieser, D.; Winter, S.; Gspan, C.; Koraimann, G.; Maver, U.; Sega, M.; Kostler, S.; Stana-Kleinschek, K.; Spirk, S.; Ribitsch, V. Gold Nanoparticles in the Engineering of Antibacterial and Anticoagulant Surfaces. Carbohydr. Polym. 2015, 117, 34–42. [59] Hubbell, J. A.; Chilkoti, A. Nanomaterials for Drug Delivery. Science 2012, 337, 303305. [60] Jiao, Y. Y.; Ubrich, N.; Marchand-Arvier, M.; Vigneron, C.; Hoffman, M.; Lecompte, T.; Maincent, P. In Vitro and in Vivo Evaluation of Oral Heparin-Loaded Polymeric Nanoparticles in Rabbits. Circulation 2002, 105, 230–235. [61] da Silva, L. C.; Garcia, T.; Mori, M.; Sandri, G.; Bonferoni, M. C.; Finotelli, P. V.; Cinelli, L. P.; Caramella, C.; Cabral, L. M. Preparation and Characterization of Polysaccharide-Based Nanoparticles with Anticoagulant Activity. Int. J. Nanomed. 2012, 7, 29752986. [62] Kim, M.; Jang, J.; Cha, C. Carbon Nanomaterials as Versatile Platforms for Theranostic Applications. Drug Discov. Today 2017, 22, 14301437. [63] Tang, A. C. L.; Chang, M. Y.; Tang, Z. C. W.; Li, H. J.; Hwang, G. L.; Hsieh, P. C. H. Treatment of Acute Thromboembolism in Mice Using Heparin-Conjugated Carbon Nanocapsules. ACS Nano 2012, 6, 60996107. [64] Park, T. J.; Kim, Y. S.; Hwang, T.; Govindaiah, P.; Choi, S. W.; Kim, E.; Won, K.; Lee, S. H.; Kim, J. H. Preparation and Characterization of Heparinized Multi-Walled Carbon Nanotubes. Process Biochem. 2012, 47, 113118. [65] Ge, M.; Sattler, K. Observation of Fullerene Cones. Chem. Phys. Lett. 1994, 220, 192–196. [66] De Jong, K. P.; Geus, J. W. Carbon Nanofibers: Catalytic Synthesis and Applications. Catal. Rev. 2000, 42, 481–510. [67] Kim, Y. A.; Hayashi T.; Endo, M.; Dresselhaus, M. S. Carbon nanofibers. In Springer Handbook of Nanomaterials; Vajtai, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 233–262. [68] Terrones, H.; Hayashi, T.; Munoz-Navia, M.; Terrones, M.; Kim, Y. A.; Grobert, N.; Kamalakaranf, R.; Dorantes-Dávilad, J.; Escuderog, R.; Dresselhaush, M.S.; et al. Graphitic Cones in Palladium Catalysed Carbon Nanofibres. Chem. Phys. Lett. 2001, 343, 241–250. [69] Inagaki, M.; Yang, Y.; Kang, F. Carbon Nanofibers Prepared via Electrospinning. Adv. Mater. 2012, 24, 2547–2566. [70] Zhang, L.; Aboagye, A.; Kelkar, A.; Lai, C.; Fong, H. A review: Carbon Nanofibers from Electrospun Polyacrylonitrile and Their Applications. J. Mater. Sci. 2014, 49, 463–480. [71] Sánchez, M.; Rams, J.; Campo, M.; Jiménez-Suárez, A.; Ureña, A. Characterization of Carbon Nanofiber/Epoxy Nanocomposites by the Nanoindentation Technique. Compos. B Eng. 2011, 42, 638–644. [72] Brigandi, P. J.; Cogen, J. M.; Reffner, J. R.; Wolf, C. A.; Pearson, R. A. Influence of Carbon Black and Carbon Nanotubes on the Conductivity, Morphology, and Rheology of Conductive Ternary Polymer Blends. Polym. Eng. Sci. 2017, 57, 13291339. [73] Zhao, J.; Liu, X.; Zhu, Z.; Wang, N.; Sun, W.; Chen, C.; He, Z. Molecular Insight into the Enhancement of Benzene-Carbon Nanotube Interactions by Surface Modification for Drug Delivery Systems (DDS) Appl. Surf. Sci. 2017, 416, 757765. [74] Zeng, F.; Broicher, C.; Palkovits, S.; Simeonov, K.; Palkovits, R. Synergy Between Active Sites and Electric Conductivity of Molybdenum Sulfide for Efficient Electrochemical Hydrogen Production. Catal. Sci. Technol. 2018, 8, 367375. [75] Huang, T. Z.; Fang, H. Y.; Mao, S.; Yu, J. M.; Qi, L. In-Situ Synthesized TiC@CNT as High-Performance Catalysts for Oxygen Reduction Reaction. Carbon 2018, 126, 566573. [76] Chen, W.; Li, D.; Peng, C.; Qian, G.; Duan, X.; Chen, D.; Zhou, X. Mechanistic and Kinetic Insights into the Pt-Ru Synergy During Hydrogen Generation from Ammonia Borane over PtRu/CNT Nanocatalysts. J. Catal. 2017, 356, 186196. [77] Tanriverdi, S.; Koroglu, O. A.; Uygur, O.; Balkan, C.; Yalaz, M.; Kultursay, N. The effect of inhaled nitric oxide therapy on thromboelastogram in newborns with persistent pulmonary hypertension. Eur. J. Pediatr. 2014, 173, 13811385. [78] Chen, C.-K.; Huang, C. -C.; Chang, H. -T. Label-Free Colorimetric Detection of Picomolar Thrombin in Blood Plasma Using a Gold Nanoparticle-Based Assay. Biosens. Bioelectron. 2010, 25, 19221927. [79] Lin, K. Y.; Lo, J. H.; Consul, N.; Kwong, G. A.; Bhatia, S. N. Self-titrating Anticoagulant Nanocomplexes that Restore Homeostatic Regulation of the Coagulation Cascade. ACS Nano 2014, 8, 87768785. [80] Hirota, K.; Makela, J.; Tokunaga, O. Reactions of Sulfur Dioxide with Ammonia: Dependence on Oxygen and Nitric Oxide. Ind. Eng. Chem. Res. 1996, 35, 33623368. [81] Yang, J.; Bao, Y.; Pan, P. Preparation of Hierarchical Porous Carbons from Amphiphilic Poly(Vinylidene Chloride-Co-Methyl Acrylate)-b-Poly(Acrylic Acid) Copolymers by Self-Templating and One-Step Carbonization Method. Microporous Mesoporous Mat. 2014, 196, 199207. [82] Jian, H.-J.; Wu, R.-S.; Lin, T.-Y.; Li, Y.-J.; Lin, H.-J.; Harroun, S.-G.; Lai, J.-Y.; Huang, C.-C. Super-Cationic Carbon Quantum Dots Synthesized from Spermidine as an Eye Drop Formulation for Topical Treatment of Bacterial Keratitis. ACS Nano 2017, 11, 67036716. [83] Li, Y.-J.; Harroun, S.-G.; Su, Y.-C.; Huang, C.-F.; Unnikrishnan, B.; Lin, H.-J.; Lin, C.-H.; Huang, C.-C. Synthesis of Self-Assembled Spermidine-Carbon Quantum Dots Effective against Multidrug-Resistant Bacteria. Adv. Healthc. Mater. 2016, 5, 25452554. [84] Zhu, S. J.; Song, Y. B.; Wang, J.; Wan, H.; Zhang, Y.; Ning, Y.; Yang, B. Photoluminescence Mechanism in Graphene Quantum Dots: Quantum Confinement Effect and Surface/Edge State. Nano Today 2017, 13, 1014. [85] Gong, X. J.; Hu, Q.; Paau, M. C.; Zhang, Y.; Zhang, L.; Shuang, S. M.; Dong, C.; Choi, M. M. P. High-performance Liquid Chromatographic and Mass Spectrometric Analysis of Fluorescent Carbon Nanodots. Talanta. 2014, 129, 529–538. [86] Zhu, B.; Sun, S.; Wang, Y.; Deng, S.; Qian, G.; Wang, M.; Hu, A. Preparation of Carbon Nanodots from Single Chain Polymeric Nanoparticles and Theoretical Investigation of the Photoluminescence Mechanism. J. Mater. Chem. C. 2013, 1, 580–586. [87] Fan, L.; Jiang, L.; Xu, Y.; Zhou, Y.; Shen, Y.; Xie, W.; Long, Z.; Zhou, J. Synthesis and Anticoagulant Activity of Sodium Alginate Sulfates. Carbohydr. Polym. 2011, 83, 1797–1803. [88] Sundarrajan, P.; Eswaran, P.; Marimuthu, A.; Subhadra, L. B.; Kannaiyan, P. One Pot Synthesis and Characterization of Alginate Stabilized Semiconductor Nanoparticles. Bull. Korean Chem. Soc. 2012, 33, 17. [89] Hu, C.; Liu, Y.; Yang, Y.; Cui, J.; Huang, Z.; Wang, Y.; Yang, L.; Wang, H.; Xiao, Y.; Rong, J. One-Step Preparation of Nitrogen-Doped Graphene Quantum Dots from Oxidized Debris of Graphene Oxide. J. Mater. Chem. B. 2013, 1, 3942. [90] Lu, Y. C.; Chen, J.; Wang, A. J.; Bao, N.; Feng, J. J.; Wang, W. P.; Shao, L. Facile Synthesis of Oxygen and Sulfur Co-Doped Graphitic Carbon Nitride Fluorescent Quantum Dots and Their Application for Mercury(II) Detection and Bioimaging. J. Mater. Chem. C. 2015, 3, 7378. [91] Xu, Q.; Liu, Y.; Gao, C.; Wei, J.; Zhou, H.; Chen, Y.; Dong, C.; Sreeprasad, T. S.; Li, N.; Xia, Z. Synthesis, Mechanistic Investigation, and Application of Photoluminescent Sulfur and Nitrogen Co-Doped Carbon Dots. J. Mater. Chem. C. 2015, 3, 98859893. [92] Ahmed, M. S.; Kim, M. S.; Jeon, S. Selective Electrocatalytic Ethanol Oxidation on Graphene Supported Palladium Nanostructures with Sulfur Linkage for Biosensor Application. J. Nanosci. Nanotechnol. 2016, 16, 82948301. [93] Huang, Y.; Candelaria, S. L.; Li, Y.; Li, Z.; Tian, J.; Zhang, L.; Cao, G. Sulfurized Activated Carbon for High Energy Density Supercapacitors. J. Power Sources 2014, 252, 9097. [94] Chuang, C.-H.; Ray, S.-C.; Mazumder, D.; Sharma, S.; Ganguly, A.; Papakonstantinou, P.; Chiou, J.-W.; Tsai, H.-M.; Shiu, H.-W.; Chen, C.-H.; Lin, H.-J.; Guo, J.; Pong, W.-F. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study. Sci. Rep. 2017, 7. [95] Ishizaki, T.; Wada, Y.; Chiba, S.; Kumagai, S.; Lee, H.; Serizawa, A.; Li, O. L.; Panomsuwan, G. Effects of Halogen Doping on Nanocarbon Catalysts Synthesized by a Solution Plasma Process for the Oxygen Reduction Reaction. Phys. Chem. Chem. Phys. 2016, 18, 2184321851. [96] Zhang, M.; Zhao, X.; Fang, Z.; Niu, Y.; Lou, J.; Wu, Y.; Zou, S.; Xia, S.; Sun, M.; Du, F. Fabrication of HA/PEI-Functionalized Carbon Dots for Tumor Targeting, Intracellular Imaging and Gene Delivery. RSC Adv. 2017, 7, 33693375. [97] Rjeb, M.; Labzour, A.; Rjeb, A.; Sayouri, S.; El Idrissi, M. C.; Massey, S. Contribution to the Study by X-Ray Photoelectron Spectroscopy of the Natural Aging of the Polypropylene. M. J. Condensed Matter 2004, 5, 168172. [98] Stevens, J. S.; de Luca, A. C.; Pelendritis, M.; Terenghi, G.; Downes, S.; Schroeder, S. L. M. Quantitative Analysis of Complex Amino Acids and RGD Peptides by X-Ray Photoelectron Spectroscopy (XPS). Surf. Interface Anal. 2013, 45, 12381246. [99] Ding, Y.; Zhou, Y.; Nie, W.; Chen, P. MoS2-GO Nanocomposites Synthesized Via a Hydrothermal Hydrogel Method for Solar Light Photocatalytic Degradation of Methylene Blue. Appl. Surf. Sci. 2015, 357, 16061612. [100] Kettle, J.; Ding, Z.; Horie, M.; Smith, G. C. XPS Analysis of the Chemical Degradation of PTB7 Polymers for Organic Photovoltaics. Org. Electron. 2016, 39, 222228. [101] Huang, H.; Lu, Y. C.; Wang, A. J.; Liu, J. H.; Chen, J. R.; Feng, J. J. A Facile, Green, and Solvent-Free Route to Nitrogen-Sulfur-Codoped Fluorescent Carbon Nanoparticles for Cellular Imaging. RSC Adv. 2014, 4, 1187211875. [102] Ma, L.; Cheng, C.; Nie, C.; He, C.; Deng, J.; Wang, L.; Xia, Y.; Zhao, C. Anticoagulant Sodium Alginate Sulfates and Their Mussel-Inspired Heparin-Mimetic Coatings. J. Mat. Chem. B. 2016, 4, 32033215. [103] Gan, Z.; Xu, H.; Hao, Y. Mechanism for Excitation-Dependent Photoluminescence from Graphene Quantum Dots and Other Graphene Oxide Derivates: Consensus, Debates and Challenges. Nanoscale 2016, 8, 77947807. [104] Xie, Y.; He, C.; Liu, L.; Mao, L.; Wang, K.; Huang, Q.; Liu, M.; Wan, Q.; Deng, F.; Huang, H.; Zhang, X.; Wei, Y. Carbon Nanotube Based Polymer Nanocomposites: Biomimic Preparation and Organic Dye Adsorption Applications. RSC Adv. 2015, 5, 8250382512. [105] Wang, P. H.; Ghoshal, S.; Gulgunje, P.; Verghese, N.; Kumar, S. Polypropylene Nanocomposites with Polymer Coated Multiwall Carbon Nanotubes. Polymer, 2016, 100, 244258. [106] Terada, M.; Itoh, M.; Liu, J. R.; Machida, K. Electromagnetic Wave Absorption Properties of Fe3C/Carbon Nanocomposites Prepared by a CVD Method. J. Magn. Magn. Mater. 2009, 321, 12091213. [107] Xie, M.; Wei, W.; Jiang, Z.; Xu, Y.; Xie, J. Carbon Nitride Nanowires/Nanofibers: A Novel Template-Free Synthesis from a Cyanuric Chloride-Melamine Precursor Towards Enhanced Adsorption and Visible-Light Photocatalytic Performance. Ceram. Int. 2016, 42, 41584170. [108] Zhang, J.; Yan, S.; Jia, Q.; Huang, J.; Lin, L.; Zhang, S. Preparation of SiC/SiO2 Core-Shell Nanowires via Molten Salt Mediated Carbothermal Reduction Route. Physica. E. 2016, 80, 1924. [109] Lu, Y.; Wang, J.; Yuan, H.; Xiao, D. Separation of Carbon Quantum Dots on a C18 Column by Binary Gradient Elution via HPLC. Anal. Methods 2014, 6, 81248128. [110] Robertson, J. Heterogeneous Catalysis Model of Growth Mechanisms of Carbon Nanotubes, Graphene and Silicon Nanowires. J. Mater. Chem. 2012, 22, 1985819862. [111] Feng, L.; Xie, N.; Zhong, J. Carbon Nanofibers and Their Composites: A Review of Synthesizing, Properties and Applications. Materials 2014, 7, 39193945. [112] Bachmatiuk, A.; Borrnert, F.; Schaffel, F.; Zaka, M.; Martynkowa, G. S.; Placha, D.; Schonfelder, R.; Costa, P. M. F. J.; Ioannides, N.; Warner, J. H.; Klingeler, R.; Buchner, B.; Rummeli, M. H. Investigating the Graphitization Mechanism of SiO2 Nanoparticles in Chemical Vapor Deposition ACS Nano 2009, 3, 40984104. [113] Pathak, T. S.; Yun, J. H.; Lee, J.; Paeng, K. J. Effect of Calcium Ion (Cross-Linker) Concentration on Porosity, Surface Morphology and Thermal Behavior of Calcium Alginates Prepared from Algae (Undaria pinnatifida). Carbohydr. Polym. 2010, 81, 633639. [114] Zhou, Y.; Yang, H.; Xue, X. X.; Yuan, S. Separation and Recovery of Iron and Rare Earth from Bayan Obo Tailings by Magnetizing Roasting and (NH4)2SO4 Activation Roasting. Metals 2017, 7, 119. [115] Hou, J.; Wang, W.; Zhou, T.; Wang, B.; Li, H.; Ding, L. Synthesis and Formation Mechanistic Investigation of Nitrogen Doped Carbon Dots with High Quantum Yields and Yellowish-Green Fluorescence. Nanoscale 2016, 8, 1118511193. [116] Song, Y.; Zhu, S.; Zhang, S.; Fu, Y.; Wang, L.; Zhao, X.; Yang, B. Investigation from Chemical Structure to Photoluminescent Mechanism: a Type of Carbon Dots from the Pyrolysis of Citric Acid and an Amine. J. Mater. Chem. C 2015, 3, 59765984. [117] Ignjatovic, V. Thrombin Clotting Time. Methods Mol. Biol. 2013, 992, 131138. [118] Greinacher, A.; Warkentin, T. E. The Direct Thrombin Inhibitor Hirudin. Thromb. Haemost. 2008, 99, 819829. [119] Guerrini, M.; Guglieri, S.; Beccati, D.; Torri, G.; Viskov, C.; Mourier, P. Conformational Transitions Induced in Heparin Octasaccharides by Binding with Antithrombin III. Biochem. J. 2006, 399, 191198. [120] Jeske, W. P.; Fareed, J.; Hoppensteadt, D. A.; Lewis, B.; Walenga, J. M. Pharmacology of Argatroban. Expert. Rev. Hematol. 2010, 3, 527539. [121] Johnson, J. A.; Cavallari, L. H. Warfarin Pharmacogenetics, Trends Cardiovasc. Med. 2015, 25, 3341. [122] Levy, J. H.; Szlam, F.; Wolberg, A. S.; Winkler, A. Clinical Use of the Activated Partial Thromboplastin Time and Prothrombin Time for Screening: A Review of the Literature and Current Guidelines for Testing. Clin. Lab. Med. 2014, 34, 453477. [123] Xin, M.; Ren, L.; Sun, Y.; Li, H. H.; Guan, H. S.; He, X. X.; Li, C. X. Anticoagulant and Antithrombotic Activities of Low-Molecular-Weight Propylene Glycol Alginate Sodium Sulfate (PSS). Eur. J. Med. Chem. 2016, 114, 3340. [124] Bolliger, D.; Seeberger, M. D.; Tanaka, K. A. Principles and Practice of Thromboelastography in Clinical Coagulation Management and Transfusion Practice. Transf. Med. Rev. 2012, 26, 113.
|