( 您好!臺灣時間:2021/03/05 09:33
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Lin, Fu-Yin
論文名稱(外文):Synthesis of Alginic Acid-Based Carbon Nanomaterials for Anticoagulation Application
指導教授(外文):Huang, Chih-Ching
口試委員(外文):Yu, Cheng-JuLin, Han-JiaHuang, Chih-Ching
外文關鍵詞:anticoagulantthrombincarbon nanowirepolysaccharideammonium sulfite
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
市售肝素 (heparin) 為目前最為普遍使用的抗凝血劑,然而其容易產生副作用,以往減輕肝素副作用的方法為將其進行結構改良或是合成類似物來取代,但合成步驟極為繁複且昂貴。許多研究指出,海藻萃取出的生物活性分子有許多應用,包括抗癌、抗腫瘤、抗病毒,其中硫酸多醣 (sulfated polysaccharides) 可作為抗凝血劑。由於天然的硫酸多醣不易萃取且成本極高,費時且獲得的產率低,近年來有諸多利用硫化物 (sulfur compounds) 將一般多醣硫酸化後作為抗凝血劑應用。其中,海藻酸鈉 (alginate) 為一種萃取於褐藻的多醣,單元結構類似肝素且成本低。為了突破硫酸化後海藻多醣分子不穩定性以及無顯著性的抗凝血效果,因此本研究欲將海藻酸鈉及亞硫酸銨 (ammonium sulfite, (NH4)2SO3) 混和後,經由簡單一步 (one-step) 乾燒合成硫酸化海藻酸鈉碳奈米材料。在165 °C的條件之下,我們成功製備出硫酸化之海藻酸鈉碳奈米線 (sulfated@alginate-carbon nanowires, CNWsAlg@SOx)。實驗證實CNWsAlg@SOx能夠與凝血酶 (thrombin) 結合,達到延長凝血酶凝固時間 (thrombin clotting time, TCT),且效果比海藻酸鈉高100倍以上。於溶血實驗 (hemolysis assay) 結果顯示CNWsAlg@SOx不會造成紅血球溶血,使其具有成為注射型抗凝血奈米材料潛力。此外,鼠尾出血時間試驗 (tail bleeding time) 顯示其抗凝血時間比海藻酸鈉高6倍以上,證明此奈米抗凝血劑能成功應用於活體試驗中,且達到良好效果。未來將測試其他種藻類與不同硫化物一步乾燒製成其他奈米抗凝血劑。
Heparin is the most commonly used commercial anticoagulant; however, it can potentially cause very serious side effects. Structural modification of heparin or development of heparin analogs are common methods used to reduce its side effects. These methods often involve complex synthesis procedures and expensive chemicals. Studies suggest that extracts of marine algae are rich in bioactive chemicals with many properties including anticancer, antitumor and antivirus. Sulfated algal polysaccharides, in particular, are known to have anticoagulation properties. However, extraction of such polysaccharides are time consuming and expensive, which bring about the need for chemically sulfating polysaccharides with sulfur compounds. Alginate, a non-sulfated polysaccharide, is a popular choice due to its structural similarity to heparin and low cost. Unfortunately, its low bio-stability and less than satisfactory anticoagulation efficiency limits its application. In this research, we hope to improve the anticoagulation efficiency of alginate by nanonizing its structure and sulfating its functional groups. We successfully synthesized sulfated alginate carbon nanowires (CNWsAlg@SOx) by heat treatment of alginate with ammonium sulfate at 165 °C. We have demonstrated that the CNWsAlg@SOx can inhibit thrombin activity through electrostatic interaction. Thrombin clotting time (TCT) assay revealed our CNWsAlg@SOx has 100-fold longer TCT compared to its precursor. Its low hemolytic activity demonstrated its potential for intravenous administration. Tail bleeding assay revealed that our material is 6-fold more efficient in vivo compared to its alginate precursor. We will extend our research to synthesize carbon nanomaterials by varying the carbon source and sulfur compounds to develop more efficient anticoagulants.
中文摘要 I
英文摘要 II
Contents III
Figure of contents IV
Table of contents V
1. Introduction 1
1-1 Blood coagulation and anticoagulation methods 1
1-2 Polysaccharides from marine algae for biomedical applications 2
1-2-1 Polysaccharides extracted from marine algae 2
1-2-2 Marine algae for antioxidant application 3
1-2-3 Marine algae for anticancer application 3
1-2-4 Marine algae for antiviral application 4
1-2-5 Marine algae for anticoagulation application 4
1-3 Sulfated polysaccharides for anticoagulation application 5
1-4 Applications of nanomedicines as anticoagulants 7
1-4-1 Inorganic nano-anticoagulants 8
1-4-2 Organic nano-anticoagulants 8
1-4-3 Carbon nanomaterials as anticoagulants 9
1-5 Carbon nanowires 9
1-5-1 Introductions of carbon nanowires 9
1-5-2 Synthesis of carbon nanowires 10
1-5-3 Application of carbon nanowires 11
1-6 Motivation Reasearch 11
2. Experimental 13
2-1 Materials 13
2-2 Instruments 13
2-3 Synthesis of alginate- and sulfated alginate-carbon nanomaterials 14
2-4 FT-IR measurements 15
2-5 Measurement of degree of sulfation 15
2-6 Thrombin clotting time (TCT) assay 15
2-7 PT and aPTT assay 16
2-8 Thromboelastography 16
2-9 Determination of binding constant 17
2-10 Hemolysis assays 17
2-11 Determination of rat-tail bleeding time 18
3. Results and discussion 18
3-1 Synthesis of carbon nanomaterials from alginate and alginate-sulfite mixture 19
3-2 Characterization of CNMsAlg@SOx -165 22
3-3 Mechanism of nanowire formation in CNMsAlg@SOx-165 23
3-4 Anticoagulation properties of CNMsAlg@SOx 25
3-5 Prothrombin time and activated partial thromboplastin time 27
3-6 Thromboelastography 28
3-7 Hemolysis assays 28
3-8 In vivo rat-tail bleeding assay 28
4. Conclusion 30
Figures and tables 31
References 60
[1] Sabir, I.; Khavandi, K.; Brownrigg, J.; Camm, A. Oral Anticoagulants for Asian Patients with Atrial Fibrillation. Nat. Rev. Cardiol. 2014, 11, 290303.
[2] Owens A, P.; Mackman, N. Tissue Factor and Thrombosis: The Clot Starts Here. Thromb. Haemost. 2010, 104, 432439.
[3] Wheeler, A. P.; Gailani, D. The Intrinsic Pathway of Coagulation as a Target for Antithrombotic Therapy. Hematol. Oncol. Clin. North Am. 2016, 30, 10991114.
[4] Lu, G. M.; Lin, J.; Curnutte, J. T.; Conley, P. B. Reversal of Heparin-Induced Anticoagulation by Andexanet Alfa, a Universal Antidote for Factor Xa Inhibitors. Blood 2015, 126, 23292337.
[5] Mega, J. L.; Simon, T. Pharmacology of Antithrombotic Drugs: An Assessment of Oral Antiplatelet and Anticoagulant Treatments. Lancet. 2015, 286, 281291.
[6] Rashid, Q.; Abid, M.; Jairajpuri, M. A. Elucidating the Specificity of Non-Heparin-Based Conformational Activators of Antithrombin for Factor Xa Inhibition. J. Nat. Sci. Biol. Med. 2014, 5, 3642.
[7] Sankarayanarayanan, N. V.; Strebel, T. R.; Boothello, R. S.; Sheerin, K.; Raghuraman, A.; Sallas, F.; Mosier, P. D.; Watermeyer, N. D.; Oscarson, S.; Desai, U. R. A Hexasaccharide Containing Rare 2-O-Sulfate-Glucuronic Acid Residues Selectively Activates Heparin Cofactor II. Angew. Chem. Int. Ed. 2017, 56, 17.
[8] Vityazev, F. V.; Golovchenko, V. V.; Patova, O. A.; Drozd, N. N.; Makarov, V.A.; Shashkov, A. S.; Ovodov, Y. S. Synthesis of Sulfated Pectins and Their Anticoagulant Activity. Biochem.-Moscow 2010, 75, 759768.
[9] Norgren, L. Can Low Molecular Weight HeparinReplace Unfractionated Heparin During Peripheral Arterial Reconstruction? An Open Label Prospective Randomized Controlled Trial. J. Vasc. Surg. 2004, 39, 977984.
[10] Petitou, M.; Herault, L. P.; Bernat, A.; Driguez, P. A.; Duchaussoy, P.; Lormeau, J. C.; Herbert, J. M. Synthesis of Thrombin-Inhibiting Heparin Mimetics Without Side Effects. Nature 1999, 398, 417422.
[11] Raposo, M. F. D.; de Morais, A. M. B.; de Morais, R. M. S. C. Marine Polysaccharides from Algae with Potential Biomedical Applications. Mar. Drugs 2015, 13, 29673028.
[12] Cunha, L.; Grenha, A. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications. Mar. Drugs 2016, 14, 42.
[13] Schaeffer, D. J.; Krylov, V. S. Anti-HIV Activity of Extracts and Compounds from Algae and Cyanobacteria. Ecotox. Environ. Safe. 2000, 45, 208227.
[14] Lahaye, M.; Robic, A. Structure and Functional Properties of Ulvan, a Polysaccharide from Green Seaweeds. Biomacromolecules 2007, 8, 17651774.
[15] Guerra-Rivas, G.; Gomez-Gutierrez, C. M.; Alarcon-Arteaga, G.; Soria-Mercado, I. E.; Ayala-Sanchez, N. E. Screening for Anticoagulant Activity in Marine Algae from the Northwest Mexican Pacific Coast. J. Appl. Phycol. 2011, 23, 495503.
[16] Jiao, G. L.; Yu, G. L.; Zhang, J. Z.; Ewart, H. S. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae. Mar. Drugs 2011, 9, 196223.
[17] Mohamed, S.; Hashim, S. N.; Rahman, H. A. Seaweeds: A Sustainable Functional Food for Complementary and Alternative Therapy. Trends Food Sci. Technol. 2012, 23, 8396.
[18] Collins, K. G.; Fitzgerald, G. F.; Stanton, C.; Ross, R. P. Looking Beyond the Terrestrial: The Potential of Seaweed Derived Bioactives to Treat Non-Communicable Diseases. Mar. Drugs 2016, 14.
[19] Barros, C. D.; Cirne-Santos, C. C.; Garrido, V. Barcelos, I.; Stephens, P. R. S.; Giongo, V.; Teixeira, V. L.; Paixao, I. C. N. D. Anti-HIV-1 Activity of Compounds Derived from Marine Alga Canistrocarpus Cervicornis. J. Appl. Phycol. 2016, 28, 25232527.
[20] Faggio, C.; Pagano, M.; Dottore, A.; Genovese, G.; Morabito, M. Evaluation of Anticoagulant Activity of Two Algal Polysaccharides. Nat. Prod. Res. 2016, 30, 19341937.
[21] Kang, K.; Park, Y.; Hwang, H. J.; Kim, S. H.; Lee, J. G.; Shin, H. C. Antioxidative Properties of Brown Algae Polyphenolics and Their Perspectives as Chemopreventive Agents against Vascular Risk Factors. Arch. Pharm. Res. 2003, 26, 286293.
[22] Chandini, S. K.; Ganesan, P.; Bhaskar, N. In Vitro Antioxidant Activities of Three Selected Brown Seaweeds of India. Food Chem. 2008, 107, 707713.
[23] Duan, X. J.; Zhang, W. W.; Li, X. M.; Wang, B. G. Evaluation of Antioxidant Property of Extract and Fractions Obtained from a Red Alga, Polysiphonia Urceolata. Food Chem. 2006, 95, 3743.
[24] Zhang, Z.; Wang, F.; Wang, X.; Liu, X.; Hou, Y.; Zhang, Q. Extraction of the Polysaccharides from Five Algae and their Potential Antioxidant Activity in Vitro. Carbohydr. Polym. 2010, 82, 118121.
[25] Yamasaki-Miyamoto, Y.; Yamasaki, M.; Tachibana, H.; Yamada, K. Fucoidan Induces Apoptosis through Activation of Caspase-8 on Human Breast Cancer MCF-7 Cells. J. Agric. Food Chem. 2009, 57, 86778682.
[26] Ye, J.; Li, Y. P.; Teruya, K.; Katakura, Y.; Ichikawa, A.; Eto, H.; Hosoi, M.; Hosoi, M.; Nishimoto, S.; Shirahata, S. Enzyme-Digested Fucoidan Extracts Derived from Seaweed Mozuku of Cladosiphon Novae-Caledoniae Kylin Inhibit Invasion and Angiogenesis of Tumor Cells. Cytotechnology 2005, 47, 117126.
[27] Guo, T. T.; Xu, H. L.; Zhang, L. X.; Zhang, H. P.; Guo, Y. F.; Gu, J. W.; He, P. M. In Vivo Protective Effect of Porphyra Yezoensis Polysaccharide against Carbon Tetrachloride Induced Hepatotoxicity in Mice. Regul. Toxicol. Pharmacol. 2007, 49, 101106.
[28] Ni, A. G.; Agata, J.; Yang, Z.; Chao, R.; Chao, J. Overexpression of Kinin B-1 Receptors Induces Hypertensive Response to Des-Arg(9)-Bradykinin and Susceptibility to Inflammation. J. Biol. Chem. 2003, 278, 219225.
[29] Wijesekara, I.; Pangestuti, R.; Kim, S. K. Biological Activities and Potential Health Benefits of Sulfated Polysaccharides Derived from Marine Algae. Carbohydr. Polym. 2011, 84, 1421.
[30] Buck, C. B.; Thompson, C. D.; Roberts, J. N.; Muller, M.; Lowy, D. R.; Schiller, J. T. Carrageenan is a Potent Inhibitor of Papillomavirus Infection. PLoS Pathog. 2006, 2, 671680.
[31] Talarico, L. B.; Pujol, C. A.; Zibetti, R. G. M.; Faria, P. C. S.; Noseda, M. D.; Duarte, M. E. R.; Damonte, E. B. The Antiviral Activity of Sulfated Polysaccharides against Dengue Virus is Dependent on Virus Serotype and Host Cell. Antiviral Res. 2005, 66, 103110.
[32] Caceres, P. J.; Carlucci, M. J.; Damonte, E. B.; Matsuhiro, B.; Zuniga, E. A. Carrageenans from Chilean Samples of Stenogramme Interrupta (Phyllophoraceae): Structural Analysis and Biological Activity. Phytochemistry 2000, 53, 8186.
[33] Zayed, A.; Muffler, K.; Hahn, T.; Rupp, S.; Finkelmeier, D.; Burger-Kentischer, A.; Ulber, R. Physicochemical and Biological Characterization of Fucoidan from Fucus vesiculosus Purified by Dye Affinity Chromatography. Mar. Drugs 2016, 14, 79.
[34] Soares, A. R.; Abrantes, J. L.; Souza, T. M. L.; Fontes, C. F. L.; Pereira, R. C.; Frugulhetti, I. C. D. P.; Teixeira, V. L. In Vitro Antiviral Effect of Meroditerpenes Isolated from the Brazilian Seaweed Stypopodium Zonale (Dictyotales). Planta Med. 2007, 73, 12211224.
[35] Wang, H.; Ooi, E.; Ang, P. O. Antiviral Activities of Extracts from Hong Kong Seaweeds. J. Zhejiang Univ. 2008, 9, 969976.
[36] Cao, Y. G.; Hao, Y.; Li, Z. H.; Liu, S. T.; Wang, L. X. Antiviral Activity of Polysaccharide Extract from Laminaria japonica against Respiratory Syncytial Virus. Biomed. Pharmacother. 2016, 84, 17051710.
[37] Eyre, H.; Kahn, R.; Robertson, R. M. Preventing Cancer, Cardiovascular Disease, and Diabetes - A Common Agenda for the American Cancer Society, the American Diabetes Association, and the American Heart Association. Stroke 2004, 35, 19992010.
[38] Azab, W.; Tsujimura, K.; Maeda, K.; Kobayashi, K.; Mohamed, Y. M .; Kato, K.; Matsumura, T.; Akashi, H. Glycoprotein C of Equine Herpesvirus 4 Plays a Role in Viral Binding to Cell Surface Heparan Sulfate. Virus Res. 2010, 151, 19.
[39] Miao, C. H.; Li, M. H.; Zheng, Y. M.; Cohen, F. S.; Liu, S. L. Cell-Cell Contact Promotes Ebola Virus GP-Mediated Infection. Virology 2016, 488, 202215.
[40] Esnault, C.; Heidmann, O.; Delebecque, F.; Dewannieux, M.; Ribet, D.; Hance, A. J.; Heidmann, T.; Schwartz, O. APOBEC3G Cytidine Deaminase Inhibits Retrotransposition of Endogenous Retroviruses. Nature 2005, 433, 430433.
[41] Zheng, D. H.; Chen, H.; Bartee, M. Y.; Williams, J.; Davids, J. A.; Huang, E. N.; Moreb, J.; Lucas, A. Virus-Derived Anti-Inflammatory Proteins: Potential Therapeutics for Cancer. Trends Mol. Med. 2012, 18, 304310.
[42] Kim, S. K.; Wijesekara, I. Anticoagulant Effect of Marine Algae. Adv. Food. Nutr. Res. 2011, 64, 235244.
[43] Pomin, V. H.; Mourao, P. A. S. Structure, Biology, Evolution, and Medical Importance of Sulfated Fucans and Galactans. Glycobiology 2008, 18, 10161027.
[44] Ciancia, M.; Quintana, I.; Cerezo, A. S. Overview of anticoagulant activity of Sulfated Polysaccharides from Seaweeds in Relation to their Structures, Focusing on those of Green Seaweeds. Curr. Med. Chem. 2010, 17, 25032529.
[45] Magalhaes, K. D.; Costa, L. S.; Fidelis, G. P.; Oliveira, R. M.; Nobre, L. T. D. B.; Dantas-Santos, N.; Camara, R. B. G.; Albuquerque, I. R. L.; Cordeiro, S. L.; Sabry, D. A.; Costa, M. S. S. P.; Alves, L. G.; Rocha, H. A. O. Anticoagulant, Antioxidant and Antitumor Activities of Heterofucans from the Seaweed Dictyopteris delicatula. Int. J. Mol. Sci. 2011, 12, 33523365.
[46] Camara, R. B. G.; Costa, L. S.; Fidelis, G. P.; Nobre, L. T. D. B.; Dantas-Santos, N.; Cordeiro, S. L.; Costa, M. S. S. P.; Alves, L. G.; Rocha, H. A. O. Heterofucans from the Brown Seaweed Canistrocarpus cervicornis with Anticoagulant and Antioxidant Activities. Mar. Drugs 2011, 9, 124138.
[47] Cumashi, A.; Ushakova, N. A.; Preobrazhenskaya, M. E.; D'Incecco, A.; Piccoli, A.; Totani, L.; Tinari, N.; Morozevich, G. E.; Berman, A. E.; Bilan, M. I.; Usov, A. I.; Ustyuzhanina, N. E.; Grachev, A. A.; Sanderson, C. J.; Kelly, M.; Rabinovich, G. A.; Iacobelli, S.; Nifantiev, N. E. A Comparative Study of the Anti-Inflammatory, Anticoagulant, Antiangiogenic, and Antiadhesive Activities of Nine Different Fucoidans from Brown Seaweeds. Glycobiology 2007, 17, 541552.
[48] Gracher A. H. P.; Santana, A. G.; Cipriani, T. R.; Lacomini. M. A Procoagulant Chemically Sulfated Mannan. Carbohydr. Polym. 2015, 136, 177186.
[49] Fan, L. H.; Jiang, L.; Xu, Y. M.; Zhou, Y.; Shen, Y. A.; Xie, W. G.; Long, Z. H.; Zhou, J. P. Synthesis and Anticoagulant Activity of Sodium Alginate Sulfates. Carbohydr. Polym. 2011, 83, 17971803.
[50] Zia, F.; Zia, K. M.; Zuber, M.; Ahmad, H. B.; Muneer, M. Glucomannan Based Polyurethanes: A Critical Short Review of Recent Advances and Future Perspectives. Int. J. Biol. Macromol. 2016, 87, 229236.
[51] Muschin, T.; Budragchaa, D.; Kanamoto, T.; Nakashima, H.; Ichiyama, K.; Yamamoto, N.; Shuqin, H.; Yoshida, T. Chemically Sulfated Natural Galactomannans with Specific Antiviral and Anticoagulant Activities. Int. J. Biol. Macromol. 2016, 89, 415420.
[52] Drozd, N. N.; Torlopov, M. A.; Kuzhim, A. A.; Makarov, V. A. Dependence of the Anticoagulant Activity of Starch and Inulin on Their Degree of Sulfonation. Eksp. Klin. Farmakol. 2012, 75, 3135.
[53] Guo, L.; Yang, Y. L.; Yang, T.; Liu, Z. H..; Feng, S. L. Sulfated Modification and Anticoagulant Activity in Vitro of Sulfated Glucan Isolated from the Aqueous Extract of Hedysarum Polybotrys. Acta. Pharmacol. Sin. 2013, 48, 16651670.
[54] Arlov, O.; Skjak-Braek, G. Sulfated Alginates as Heparin Analogues: A Review of Chemical and Functional Properties. Molecules 2017, 22, 778788.
[55] Ilinskaya, A. N.; Dobrovolskaia, M. A. Nanoparticles and the Blood Coagulation System. Part I: Benefits of Nanotechnology. Nanomedicine 2013, 8, 773784.
[56] Argyo, C.; Cauda, V.; Engelke, H.; Radler, J.; Bein, G.; Bein, T. Heparin-Coated Colloidal Mesoporous Silica Nanoparticles Efficiently Bind to Antithrombin as an Anticoagulant Drug-Delivery System. Chem. 2012, 18, 428432.
[57] Shiang, Y.-C.; Hsu, C.-L.; Huang, C.-C.; Chang, H.-T. Gold Nanoparticles Presenting Hybridized Self-Assembled Aptamers that Exhibit Enhanced Inhibition of Thrombin. Angew. Chem. Int. Ed. 2011, 50, 76607665.
[58] Ehmann, H. M. A.; Breitwieser, D.; Winter, S.; Gspan, C.; Koraimann, G.; Maver, U.; Sega, M.; Kostler, S.; Stana-Kleinschek, K.; Spirk, S.; Ribitsch, V. Gold Nanoparticles in the Engineering of Antibacterial and Anticoagulant Surfaces. Carbohydr. Polym. 2015, 117, 34–42.
[59] Hubbell, J. A.; Chilkoti, A. Nanomaterials for Drug Delivery. Science 2012, 337, 303305.
[60] Jiao, Y. Y.; Ubrich, N.; Marchand-Arvier, M.; Vigneron, C.; Hoffman, M.; Lecompte, T.; Maincent, P. In Vitro and in Vivo Evaluation of Oral Heparin-Loaded Polymeric Nanoparticles in Rabbits. Circulation 2002, 105, 230–235.
[61] da Silva, L. C.; Garcia, T.; Mori, M.; Sandri, G.; Bonferoni, M. C.; Finotelli, P. V.; Cinelli, L. P.; Caramella, C.; Cabral, L. M. Preparation and Characterization of Polysaccharide-Based Nanoparticles with Anticoagulant Activity. Int. J. Nanomed. 2012, 7, 29752986.
[62] Kim, M.; Jang, J.; Cha, C. Carbon Nanomaterials as Versatile Platforms for Theranostic Applications. Drug Discov. Today 2017, 22, 14301437.
[63] Tang, A. C. L.; Chang, M. Y.; Tang, Z. C. W.; Li, H. J.; Hwang, G. L.; Hsieh, P. C. H. Treatment of Acute Thromboembolism in Mice Using Heparin-Conjugated Carbon Nanocapsules. ACS Nano 2012, 6, 60996107.
[64] Park, T. J.; Kim, Y. S.; Hwang, T.; Govindaiah, P.; Choi, S. W.; Kim, E.; Won, K.; Lee, S. H.; Kim, J. H. Preparation and Characterization of Heparinized Multi-Walled Carbon Nanotubes. Process Biochem. 2012, 47, 113118.
[65] Ge, M.; Sattler, K. Observation of Fullerene Cones. Chem. Phys. Lett. 1994, 220, 192–196.
[66] De Jong, K. P.; Geus, J. W. Carbon Nanofibers: Catalytic Synthesis and Applications. Catal. Rev. 2000, 42, 481–510.
[67] Kim, Y. A.; Hayashi T.; Endo, M.; Dresselhaus, M. S. Carbon nanofibers. In Springer Handbook of Nanomaterials; Vajtai, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 233–262.
[68] Terrones, H.; Hayashi, T.; Munoz-Navia, M.; Terrones, M.; Kim, Y. A.; Grobert, N.; Kamalakaranf, R.; Dorantes-Dávilad, J.; Escuderog, R.; Dresselhaush, M.S.; et al. Graphitic Cones in Palladium Catalysed Carbon Nanofibres. Chem. Phys. Lett. 2001, 343, 241–250.
[69] Inagaki, M.; Yang, Y.; Kang, F. Carbon Nanofibers Prepared via Electrospinning. Adv. Mater. 2012, 24, 2547–2566.
[70] Zhang, L.; Aboagye, A.; Kelkar, A.; Lai, C.; Fong, H. A review: Carbon Nanofibers from Electrospun Polyacrylonitrile and Their Applications. J. Mater. Sci. 2014, 49, 463–480.
[71] Sánchez, M.; Rams, J.; Campo, M.; Jiménez-Suárez, A.; Ureña, A. Characterization of Carbon Nanofiber/Epoxy Nanocomposites by the Nanoindentation Technique. Compos. B Eng. 2011, 42, 638–644.
[72] Brigandi, P. J.; Cogen, J. M.; Reffner, J. R.; Wolf, C. A.; Pearson, R. A. Influence of Carbon Black and Carbon Nanotubes on the Conductivity, Morphology, and Rheology of Conductive Ternary Polymer Blends. Polym. Eng. Sci. 2017, 57, 13291339.
[73] Zhao, J.; Liu, X.; Zhu, Z.; Wang, N.; Sun, W.; Chen, C.; He, Z. Molecular Insight into the Enhancement of Benzene-Carbon Nanotube Interactions by Surface Modification for Drug Delivery Systems (DDS) Appl. Surf. Sci. 2017, 416, 757765.
[74] Zeng, F.; Broicher, C.; Palkovits, S.; Simeonov, K.; Palkovits, R. Synergy Between Active Sites and Electric Conductivity of Molybdenum Sulfide for Efficient Electrochemical Hydrogen Production. Catal. Sci. Technol. 2018, 8, 367375.
[75] Huang, T. Z.; Fang, H. Y.; Mao, S.; Yu, J. M.; Qi, L. In-Situ Synthesized TiC@CNT as High-Performance Catalysts for Oxygen Reduction Reaction. Carbon 2018, 126, 566573.
[76] Chen, W.; Li, D.; Peng, C.; Qian, G.; Duan, X.; Chen, D.; Zhou, X. Mechanistic and Kinetic Insights into the Pt-Ru Synergy During Hydrogen Generation from Ammonia Borane over PtRu/CNT Nanocatalysts. J. Catal. 2017, 356, 186196.
[77] Tanriverdi, S.; Koroglu, O. A.; Uygur, O.; Balkan, C.; Yalaz, M.; Kultursay, N. The effect of inhaled nitric oxide therapy on thromboelastogram in newborns with persistent pulmonary hypertension. Eur. J. Pediatr. 2014, 173, 13811385.
[78] Chen, C.-K.; Huang, C. -C.; Chang, H. -T. Label-Free Colorimetric Detection of Picomolar Thrombin in Blood Plasma Using a Gold Nanoparticle-Based Assay. Biosens. Bioelectron. 2010, 25, 19221927.
[79] Lin, K. Y.; Lo, J. H.; Consul, N.; Kwong, G. A.; Bhatia, S. N. Self-titrating Anticoagulant Nanocomplexes that Restore Homeostatic Regulation of the Coagulation Cascade. ACS Nano 2014, 8, 87768785.
[80] Hirota, K.; Makela, J.; Tokunaga, O. Reactions of Sulfur Dioxide with Ammonia: Dependence on Oxygen and Nitric Oxide. Ind. Eng. Chem. Res. 1996, 35, 33623368.
[81] Yang, J.; Bao, Y.; Pan, P. Preparation of Hierarchical Porous Carbons from Amphiphilic Poly(Vinylidene Chloride-Co-Methyl Acrylate)-b-Poly(Acrylic Acid) Copolymers by Self-Templating and One-Step Carbonization Method. Microporous Mesoporous Mat. 2014, 196, 199207.
[82] Jian, H.-J.; Wu, R.-S.; Lin, T.-Y.; Li, Y.-J.; Lin, H.-J.; Harroun, S.-G.; Lai, J.-Y.; Huang, C.-C. Super-Cationic Carbon Quantum Dots Synthesized from Spermidine as an Eye Drop Formulation for Topical Treatment of Bacterial Keratitis. ACS Nano 2017, 11, 67036716.
[83] Li, Y.-J.; Harroun, S.-G.; Su, Y.-C.; Huang, C.-F.; Unnikrishnan, B.; Lin, H.-J.; Lin, C.-H.; Huang, C.-C. Synthesis of Self-Assembled Spermidine-Carbon Quantum Dots Effective against Multidrug-Resistant Bacteria. Adv. Healthc. Mater. 2016, 5, 25452554.
[84] Zhu, S. J.; Song, Y. B.; Wang, J.; Wan, H.; Zhang, Y.; Ning, Y.; Yang, B. Photoluminescence Mechanism in Graphene Quantum Dots: Quantum Confinement Effect and Surface/Edge State. Nano Today 2017, 13, 1014.
[85] Gong, X. J.; Hu, Q.; Paau, M. C.; Zhang, Y.; Zhang, L.; Shuang, S. M.; Dong, C.; Choi, M. M. P. High-performance Liquid Chromatographic and Mass Spectrometric Analysis of Fluorescent Carbon Nanodots. Talanta. 2014, 129, 529–538.
[86] Zhu, B.; Sun, S.; Wang, Y.; Deng, S.; Qian, G.; Wang, M.; Hu, A. Preparation of Carbon Nanodots from Single Chain Polymeric Nanoparticles and Theoretical Investigation of the Photoluminescence Mechanism. J. Mater. Chem. C. 2013, 1, 580–586.
[87] Fan, L.; Jiang, L.; Xu, Y.; Zhou, Y.; Shen, Y.; Xie, W.; Long, Z.; Zhou, J. Synthesis and Anticoagulant Activity of Sodium Alginate Sulfates. Carbohydr. Polym. 2011, 83, 1797–1803.
[88] Sundarrajan, P.; Eswaran, P.; Marimuthu, A.; Subhadra, L. B.; Kannaiyan, P. One Pot Synthesis and Characterization of Alginate Stabilized Semiconductor Nanoparticles. Bull. Korean Chem. Soc. 2012, 33, 17.
[89] Hu, C.; Liu, Y.; Yang, Y.; Cui, J.; Huang, Z.; Wang, Y.; Yang, L.; Wang, H.; Xiao, Y.; Rong, J. One-Step Preparation of Nitrogen-Doped Graphene Quantum Dots from Oxidized Debris of Graphene Oxide. J. Mater. Chem. B. 2013, 1, 3942.
[90] Lu, Y. C.; Chen, J.; Wang, A. J.; Bao, N.; Feng, J. J.; Wang, W. P.; Shao, L. Facile Synthesis of Oxygen and Sulfur Co-Doped Graphitic Carbon Nitride Fluorescent Quantum Dots and Their Application for Mercury(II) Detection and Bioimaging. J. Mater. Chem. C. 2015, 3, 7378.
[91] Xu, Q.; Liu, Y.; Gao, C.; Wei, J.; Zhou, H.; Chen, Y.; Dong, C.; Sreeprasad, T. S.; Li, N.; Xia, Z. Synthesis, Mechanistic Investigation, and Application of Photoluminescent Sulfur and Nitrogen Co-Doped Carbon Dots. J. Mater. Chem. C. 2015, 3, 98859893.
[92] Ahmed, M. S.; Kim, M. S.; Jeon, S. Selective Electrocatalytic Ethanol Oxidation on Graphene Supported Palladium Nanostructures with Sulfur Linkage for Biosensor Application. J. Nanosci. Nanotechnol. 2016, 16, 82948301.
[93] Huang, Y.; Candelaria, S. L.; Li, Y.; Li, Z.; Tian, J.; Zhang, L.; Cao, G. Sulfurized Activated Carbon for High Energy Density Supercapacitors. J. Power Sources 2014, 252, 9097.
[94] Chuang, C.-H.; Ray, S.-C.; Mazumder, D.; Sharma, S.; Ganguly, A.; Papakonstantinou, P.; Chiou, J.-W.; Tsai, H.-M.; Shiu, H.-W.; Chen, C.-H.; Lin, H.-J.; Guo, J.; Pong, W.-F. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study. Sci. Rep. 2017, 7.
[95] Ishizaki, T.; Wada, Y.; Chiba, S.; Kumagai, S.; Lee, H.; Serizawa, A.; Li, O. L.; Panomsuwan, G. Effects of Halogen Doping on Nanocarbon Catalysts Synthesized by a Solution Plasma Process for the Oxygen Reduction Reaction. Phys. Chem. Chem. Phys. 2016, 18, 2184321851.
[96] Zhang, M.; Zhao, X.; Fang, Z.; Niu, Y.; Lou, J.; Wu, Y.; Zou, S.; Xia, S.; Sun, M.; Du, F. Fabrication of HA/PEI-Functionalized Carbon Dots for Tumor Targeting, Intracellular Imaging and Gene Delivery. RSC Adv. 2017, 7, 33693375.
[97] Rjeb, M.; Labzour, A.; Rjeb, A.; Sayouri, S.; El Idrissi, M. C.; Massey, S. Contribution to the Study by X-Ray Photoelectron Spectroscopy of the Natural Aging of the Polypropylene. M. J. Condensed Matter 2004, 5, 168172.
[98] Stevens, J. S.; de Luca, A. C.; Pelendritis, M.; Terenghi, G.; Downes, S.; Schroeder, S. L. M. Quantitative Analysis of Complex Amino Acids and RGD Peptides by X-Ray Photoelectron Spectroscopy (XPS). Surf. Interface Anal. 2013, 45, 12381246.
[99] Ding, Y.; Zhou, Y.; Nie, W.; Chen, P. MoS2-GO Nanocomposites Synthesized Via a Hydrothermal Hydrogel Method for Solar Light Photocatalytic Degradation of Methylene Blue. Appl. Surf. Sci. 2015, 357, 16061612.
[100] Kettle, J.; Ding, Z.; Horie, M.; Smith, G. C. XPS Analysis of the Chemical Degradation of PTB7 Polymers for Organic Photovoltaics. Org. Electron. 2016, 39, 222228.
[101] Huang, H.; Lu, Y. C.; Wang, A. J.; Liu, J. H.; Chen, J. R.; Feng, J. J. A Facile, Green, and Solvent-Free Route to Nitrogen-Sulfur-Codoped Fluorescent Carbon Nanoparticles for Cellular Imaging. RSC Adv. 2014, 4, 1187211875.
[102] Ma, L.; Cheng, C.; Nie, C.; He, C.; Deng, J.; Wang, L.; Xia, Y.; Zhao, C. Anticoagulant Sodium Alginate Sulfates and Their Mussel-Inspired Heparin-Mimetic Coatings. J. Mat. Chem. B. 2016, 4, 32033215.
[103] Gan, Z.; Xu, H.; Hao, Y. Mechanism for Excitation-Dependent Photoluminescence from Graphene Quantum Dots and Other Graphene Oxide Derivates: Consensus, Debates and Challenges. Nanoscale 2016, 8, 77947807.
[104] Xie, Y.; He, C.; Liu, L.; Mao, L.; Wang, K.; Huang, Q.; Liu, M.; Wan, Q.; Deng, F.; Huang, H.; Zhang, X.; Wei, Y. Carbon Nanotube Based Polymer Nanocomposites: Biomimic Preparation and Organic Dye Adsorption Applications. RSC Adv. 2015, 5, 8250382512.
[105] Wang, P. H.; Ghoshal, S.; Gulgunje, P.; Verghese, N.; Kumar, S. Polypropylene Nanocomposites with Polymer Coated Multiwall Carbon Nanotubes. Polymer, 2016, 100, 244258.
[106] Terada, M.; Itoh, M.; Liu, J. R.; Machida, K. Electromagnetic Wave Absorption Properties of Fe3C/Carbon Nanocomposites Prepared by a CVD Method. J. Magn. Magn. Mater. 2009, 321, 12091213.
[107] Xie, M.; Wei, W.; Jiang, Z.; Xu, Y.; Xie, J. Carbon Nitride Nanowires/Nanofibers: A Novel Template-Free Synthesis from a Cyanuric Chloride-Melamine Precursor Towards Enhanced Adsorption and Visible-Light Photocatalytic Performance. Ceram. Int. 2016, 42, 41584170.
[108] Zhang, J.; Yan, S.; Jia, Q.; Huang, J.; Lin, L.; Zhang, S. Preparation of SiC/SiO2 Core-Shell Nanowires via Molten Salt Mediated Carbothermal Reduction Route. Physica. E. 2016, 80, 1924.
[109] Lu, Y.; Wang, J.; Yuan, H.; Xiao, D. Separation of Carbon Quantum Dots on a C18 Column by Binary Gradient Elution via HPLC. Anal. Methods 2014, 6, 81248128.
[110] Robertson, J. Heterogeneous Catalysis Model of Growth Mechanisms of Carbon Nanotubes, Graphene and Silicon Nanowires. J. Mater. Chem. 2012, 22, 1985819862.
[111] Feng, L.; Xie, N.; Zhong, J. Carbon Nanofibers and Their Composites: A Review of Synthesizing, Properties and Applications. Materials 2014, 7, 39193945.
[112] Bachmatiuk, A.; Borrnert, F.; Schaffel, F.; Zaka, M.; Martynkowa, G. S.; Placha, D.; Schonfelder, R.; Costa, P. M. F. J.; Ioannides, N.; Warner, J. H.; Klingeler, R.; Buchner, B.; Rummeli, M. H. Investigating the Graphitization Mechanism of SiO2 Nanoparticles in Chemical Vapor Deposition ACS Nano 2009, 3, 40984104.
[113] Pathak, T. S.; Yun, J. H.; Lee, J.; Paeng, K. J. Effect of Calcium Ion (Cross-Linker) Concentration on Porosity, Surface Morphology and Thermal Behavior of Calcium Alginates Prepared from Algae (Undaria pinnatifida). Carbohydr. Polym. 2010, 81, 633639.
[114] Zhou, Y.; Yang, H.; Xue, X. X.; Yuan, S. Separation and Recovery of Iron and Rare Earth from Bayan Obo Tailings by Magnetizing Roasting and (NH4)2SO4 Activation Roasting. Metals 2017, 7, 119.
[115] Hou, J.; Wang, W.; Zhou, T.; Wang, B.; Li, H.; Ding, L. Synthesis and Formation Mechanistic Investigation of Nitrogen Doped Carbon Dots with High Quantum Yields and Yellowish-Green Fluorescence. Nanoscale 2016, 8, 1118511193.
[116] Song, Y.; Zhu, S.; Zhang, S.; Fu, Y.; Wang, L.; Zhao, X.; Yang, B. Investigation from Chemical Structure to Photoluminescent Mechanism: a Type of Carbon Dots from the Pyrolysis of Citric Acid and an Amine. J. Mater. Chem. C 2015, 3, 59765984.
[117] Ignjatovic, V. Thrombin Clotting Time. Methods Mol. Biol. 2013, 992, 131138.
[118] Greinacher, A.; Warkentin, T. E. The Direct Thrombin Inhibitor Hirudin. Thromb. Haemost. 2008, 99, 819829.
[119] Guerrini, M.; Guglieri, S.; Beccati, D.; Torri, G.; Viskov, C.; Mourier, P. Conformational Transitions Induced in Heparin Octasaccharides by Binding with Antithrombin III. Biochem. J. 2006, 399, 191198.
[120] Jeske, W. P.; Fareed, J.; Hoppensteadt, D. A.; Lewis, B.; Walenga, J. M. Pharmacology of Argatroban. Expert. Rev. Hematol. 2010, 3, 527539.
[121] Johnson, J. A.; Cavallari, L. H. Warfarin Pharmacogenetics, Trends Cardiovasc. Med. 2015, 25, 3341.
[122] Levy, J. H.; Szlam, F.; Wolberg, A. S.; Winkler, A. Clinical Use of the Activated Partial Thromboplastin Time and Prothrombin Time for Screening: A Review of the Literature and Current Guidelines for Testing. Clin. Lab. Med. 2014, 34, 453477.
[123] Xin, M.; Ren, L.; Sun, Y.; Li, H. H.; Guan, H. S.; He, X. X.; Li, C. X. Anticoagulant and Antithrombotic Activities of Low-Molecular-Weight Propylene Glycol Alginate Sodium Sulfate (PSS). Eur. J. Med. Chem. 2016, 114, 3340.
[124] Bolliger, D.; Seeberger, M. D.; Tanaka, K. A. Principles and Practice of Thromboelastography in Clinical Coagulation Management and Transfusion Practice. Transf. Med. Rev. 2012, 26, 113.
電子全文 電子全文(網際網路公開日期:20230129)
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔