跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/24 17:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭廷凱
研究生(外文):Hsiao, Ting-Kai
論文名稱:利用感應耦合電漿製作週期性三維中空圓柱之研究
論文名稱(外文):Fabrication of Periodic Three-dimensional Hollow Nanorod Arrays by Inductively Coupled Plasma
指導教授:江海邦
指導教授(外文):Chiang, Hai-Pang
口試委員:廖駿偉賴志賢
口試委員(外文):J. W. LiawLai, Chih-Hsien
口試日期:2018-07-27
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:56
中文關鍵詞:中空奈米柱感應耦合電漿蝕刻
外文關鍵詞:Hollow NanorodInductively Coupled Plasma
相關次數:
  • 被引用被引用:3
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討,利用奈米球微影術(Nanosphere lithography,NSL)結合反應式離子蝕刻(Reactive Ion Etching,RIE)與感應耦合電漿蝕刻(Inductively Coupled Plasma,ICP) 在矽基板上製作出三維中空奈米陣列圓柱,藉此討論相關實驗量測。
本實驗曾嘗試使用聚焦離子束系統(Focus ion beam,FIB)在S1813光阻基板上作中空奈米圓柱結構,但因成本較高且製程較不容易,故改使用奈米球微影術。量測方面,為了確認結構的光吸收(Absorption)波段,先蒸鍍上30nm的銀(Ag),再使用反射式光譜分析儀(Reflection spectrometer,RS)量測樣品的光吸收波長,藉此探討結合金屬與介電質的三維奈米結構所具備的電漿性與對於表面電漿(Surface Plasmon,SP)的影響。
實驗過程中使用掃描式電子顯微鏡(Scanning Electron Microscope;SEM)觀察每個實驗步驟,實驗樣品的表面結構以及結構排列的完整與均勻性。
In this paper, Nanosphere lithography (NSL) combined with Reactive Ion Etching (RIE) and Inductively Coupled Plasma (ICP) has been used to fabricate a three-dimensional hollow nanorod array on a silicon substrate.
In the early experiment, focused ion beam system (FIB) had been used to make a hollow nanorod structure on a S1813 photoresist substrate. Since the cost was higher and the process was difficult, the nano sphere lithography was used instead.
In order to confirm the light absorption band of the structure, 30nm of silver (Ag) is deposited and the absorption wavelength is measured by reflection spectrometer (RS). We investigate the surface plasmonic properties of the three-dimensional nanostructures composed of metal and dielectric.
Scanning Electron Microscope (SEM) is used to observe each experiment step, the sample surface structure, integrity and uniformity of the structure.
目錄
第一章 序論 1
1-1研究動機 1
1-2表面電漿理論 5
1-2-1簡介 5
1-2-2介電質與金屬表面之表面電漿共振 5
1-2-3侷域性表面電漿共振[30] 6
1-3 奈米球微影術 10
第二章 實驗儀器介紹 12
2-1 奈米球塗布機 12
2-2 旋轉塗佈機(Spin Coating) 14
2-3反應式離子蝕刻(Reactive-Ion Etching,RIE) 15
2-4感應耦合電漿離子蝕刻 (Inductively-Coupled Plasma,ICP) 17
2-5電子束蒸鍍機(Electron Beam Evaporation) 19
2-6 紫外線/可見光光譜儀(UV/VIS spectrometers) 22
2-7 傅立葉轉換紅外線光譜儀 23
(Fourier Transform Infrared Spectroscopy,FTIR) 23
2-8掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 24
2-9 COMSOL軟體模擬(COMSOL Multiphysics)[43-45] 25
第三章 樣品製作 27
3-1實驗過程圖 27
3-2奈米球基板製作 28
3-2-1清洗基板 28
3-2-2奈米球調配 28
3-2-3奈米球塗佈 29
3-3氧電漿蝕刻 30
3-4對基板加熱 30
3-5感應耦合電漿離子蝕刻 31
3-6電子束蒸鍍 31
第四章 實驗結果與討論 32
4-1先前實驗架構[21] 32
4-2奈米球基板製作 34
4-3奈米柱製作 37
4-4蒸鍍鎳或銀顆粒 41
4-5 Comsol模擬 43
4-5-1奈米實心圓柱 43
4-5-2中空奈米圓柱 48
第五章 結論 51
參考文獻 52
[1] H. Raether, “Surface plasmons on smooth and rough surfacesand on gratings.” Springer Tracts in Modern Physics,vol 111,P1-133(1988).
[2] Chau, Y. F. “Surface Plasmon Effects Excited by the Dielectric Hole in a Silver-Shell Nanospherical Pair. ” Plasmonics 4, 253–259 (2009).
[3] Wan, M. L., Song, Y. L., Zhang, L. F. & Zhou, F. Q. “ Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings. ”Opt. Express 23, 27361–27368 (2015).
[4] Fumiaki Miyamaru, Hiroki Morita, Yohei Nishiyama, Tsubasa Nishida, Toshihiro Nakanishi, Masao Kitano & Mitsuo W. Takeda . “Ultrafast optical control of group delay of narrow-band terahertz waves. ” Sci. Rep. 4, 4346 (2014).
[5] Sonnefraud, Y. et al. Experimental Realization of Subradiant, Superradiant, and Fano Resonances in Ring/Disk Plasmonic Nanocavities. ACS Nano 4, 1664–670 (2010).
[6] Artar, A., Yanik, A. A. & Altug, H. Fabry-Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing. Appl. Phys. Lett. 95, 767–768 (2009).
[7] Chau, Y. F. & Jiang, Z. H. Plasmonics Effects of Nanometal Embedded in a Dielectric Substrate. Plasmonics 6, 581–589 (2011).
[8] Vinnakota, R. K. & Genov, D. A. Terahertz Optoelectronics with Surface Plasmon Polariton Diode. Sci. Rep. 5, 1–6 (2014).
[9] Kwon Min-Suk, Ku Bonwoo & Kim Yonghan. Plasmofluidic Disk Resonators. Sci. Rep. 6, 23149 (2016).
[10] Zhao, J. et al. Surface plasmon resonance refractive sensor based on silver-coatedside-polished fiber. Sensors and Actuators B 230, 206–211 (2016).
[11] Debabrata Sikdar & Alexei A. Kornyshev. Theory of tailorable optical response of two-dimensional arrays of plasmonic nanoparticles at dielectric interfaces. Sci.Rep.6,33712 (2016).
[12] He Jinna, Ding Pei, Wang Junqiao, Fan Chunzhen, and Liang Erjun. Ultra-narrow band perfect absorbers based on plasmonic analog of electromagnetically induced absorption. Opt. Express 23, 6083–6091 (2015).
[13] V. G. Kravets, R. Jalil, Y.-J. Kim, D. Ansell, D. E. Aznakayeva, B. Thackray, L. Britnell, B. D. Belle, F. Withers, I. P. Radko, Z. Han, S. I. Bozhevolnyi, K. S. Novoselov, A. K. Geim & A. N. Grigorenko.Graphene-protected copper and silver plasmonics. Sci.Rep.4,5517 (2014).
[14] Jeong Hyeon-Ho, Andrew G. Mark, Mariana Alarcón-Correa, Kim Insook, Peter Oswald, Lee Tung-Chun & Peer Fischer. Dispersion and shape engineered plasmonic nanosensors. Nat. Commun.7, 11331 (2016).
[15] Li Yulian, Bowen An, Jiang Shengming, Jun Gao, Chen Yuanlin, and Pan Shengda. Plasmonic induced triple-band absorber for sensor application. Opt. Express 23, 17607–17612 (2015).
[16] Wu Dong , Liu Yumin, Li Yu, Yu Zhongyuan, Chen Lei, Li Ruifang, Ma Rui, Liu Chang, Zhang Jinqiannan & Ye Han. Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor. Sci.Rep.7, 45210 (2017).
[17] Wei, H. & Xu, H. Plasmonics in composite nanostructures. Materials Today 17,372–389 (2014).
[18] Murai, S., Sakamoto, H., Fujita, K. & Tanaka, K. Mesoporous silica layer on plasmonic array: light trapping in a layer with a variable index of refraction. Opt. Material Express 6, 2736–2744 (2016).
[19] Barnes, W. L., Murray, W. A., Dintinger, J., Devaux, E. & Ebbesen, T. W. Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys. Rev. Lett. 92, 107401 (2004).
[20] Prodan, E., Radloff, C., Halas, N. J. & Nordlander, P. A. A Hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).
[21] Francesco De Angelis,Mario Malerba,Maddalena Patrini, Ermanno Miele,Gobind Das, Andrea Toma Remo Proietti Zaccaria, and Enzo Di Fabrizio.
“3D hollow nanostructures as building blocks for multi-functional. ”Nano Lett.8, 3553–3558 (2013).
[22] Mario Malerba,Alessandro Alabastri,Ermanno Miele, Pierfrancesco Zilio Maddalena Patrini, Daniele Bajoni, Gabriele C. Messina, Michele Dipalo, Andrea Toma,Remo Proietti Zaccaria & Francesco De Angelis.“3D vertical nanostructures for enhanced infrared plasmonics. ” Sci.Rep.5,16436 (2015)
[23] Gabriele C.Messina, Mario Malerba, Pierfrancesco Zilio, Ermanno Miele, Michele Dipalo, Lorenzo Ferrara and Francesco De Angelis.“Hollow plasmonic antennas for broadband SERS spectroscopy. ” Nano.6,492–498.(2015)
[24] Chou Chau Yuan-Fong, Wang Chan-Kuang, Shen Linfang, Lim Chee Ming, Chiang Hai-Pang, Chou Chao Chung-Ting, Huang Hung Ji, Lin Chun-Ting, N. T. R. N. Kumara & Nyuk Yoong Voo.
“Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays. ”Sci.Rep.7, 16817 (2017)
[25] R. W. Wood, “On a remarkable case of uneven distributionof light in a diffraction grating spectrum ”Proc. Phys. Soc. London 18 ,269 (1902).
[26] U. Fano,“The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves)” Journal of the Optical Society of America, 31, P213-222 (1941).
[27] A. Hessel, and A. A. Oliner, “A New Theory of Wood’s Anomalies on Optical Gratings” Applied Optics, 4, P1275-1297 (1965).
[28] A. Otto, “Excitation of nonradiative surface plasma waves in silver by method of frustrated total reflection, ” Zeitschrift für Physik A Hadrons and nuclei, 216, P398-410 (1968).
[29] E. Kretschmand and H. Raether, “Radiative decay of nonradiative surface plasmonsexcited by light,”Zeitschrift für Naturforschung A,23, P2135-2136 (1968).
[30] 吳民耀, 劉威志. “表面電漿子理論與模擬”物理雙月刊(廿八卷二期) (2006)
[31] C. Bohren and D. Huffman, "Absorption and Scattering of Light by Small Particles, " Atomic & Molecular Physics,P1-544(1983).
[32] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz and S.Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles." The Journal of Chemical Physics,116,P6755-6759(2002).
[33] H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, "Resonantlight scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation. "Applied Physics Letters, 83,4625-4627(2003).
[34] Chen H. A., Lin H. Y., and Lin H. N., "Localized SurfacePlasmon Resonance in Lithographically Fabricated Single Gold Nanowires. " Journal of Physical Chemistry C ,114, P10359-10364(2010).
[35] T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles”, J. Phys. Chem. B, 104, P10549-10556 (2000).
[36] J. C. Hulteen, and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces.” J. Vac. Sci. Technol,13(3), P1553-1558 (1995).
[37] T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere Lithography Effect of the External Dielectric Medium on the Surface Plasmon.” J. Phys. Chem. B, 103, P9846-9853 (1999).
[38] J. C. Haynes, and R. P. Van Duyne, “Nanosphere Lithography A Versatile Nanofabrication Tool for Studies of Size-Dependent.” J. Phys. Chem. B,105, P5599-5611 (2001).
[39] L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold Films Deposited over Regular Arrays of Polystyrene Nanospheres as Highly Effective SERS Substrates from Visible to NIR.” J. Phys. Chem. B, 110, P23982-23986 (2006).
[40] L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, “Metal Film over Nanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy (SERS): Improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss.” J. Phys. Chem. B, 106, P853-860 (2002).
[41] J. Stropp, G. Trachta, G. Brehm, and S. Schneider, “A new version of AgFON substrates for high-throughput analytical SERS applications” J. Raman Spectrosc, 34,P26-32 (2003).
[42] Ormonde AD, Hicks EC, Castillo J, Van Duyne RP, “ Nanosphere Lithography: Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their characterization by scanning UV-visible extinction spectroscopy.” Langmuir. 20(16),6927-31.(2004)
[43] 徐偉益“利用光激發螢光以及時間解析光激發螢光光譜研究含奈米銀顆粒陣 列的三(8-羥基喹啉)鋁”國立台灣海洋大學光電科學研究所,碩士論文, (2009).
[44] Huang HL, Chou CF, Shiao SH, Liu YC, Huang JJ, Jen SU, Chiang HP.“ Surface plasmon-enhanced photoluminescence of DCJTB by using silver nanoparticle arrays. Optics Express 21,Suppl 5,
A901-8.(2013)
[45] Lin Wen-Chi, Huang Shi-Hwa, Chen Chang-Long, Chen Chih-Chia, Tsai Din Ping, Chiang Hai-Pang.“ Controlling SERS intensity by tuning the size and height of a silver nanoparticle array. ”Applied Physics A, 101(1),185-189 (2010).
[46] Xu Xiaobin , Yang Qing , Natcha Wattanatorn, Zhao Chuanzhen, Chiang Naihao,Steven J.Jonas ,and Paul .Weiss.
“ Multiple-Patterning Nanosphere Lithography for Fabricating Periodic Three-Dimensional Hierarchical Nanostructures.”ACS Nano 11,10384−10391(2017)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top