跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/27 10:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林家如
研究生(外文):LIN, CHIA-JU
論文名稱:以水災風險觀點探討都市地區導入低衝擊開發策略之運用─以三峽新舊市區為例
論文名稱(外文):Exploring Low Impact Development use in Urban Areas from the Perspective of Risk–A Case Study of Sanxia
指導教授:顧嘉安顧嘉安引用關係
指導教授(外文):KU, CHIA-AN
口試委員:詹士樑陳姿伶顧嘉安
口試委員(外文):CHAN, SHIH-LIANGCHEN, TZU-LINGKU, CHIA-AN
口試日期:2018-07-18
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:都市計劃研究所
學門:建築及都市規劃學門
學類:都市規劃學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:120
中文關鍵詞:都市水患低衝擊開發風險評估FLO-2D二維淹水模式層級分析法
外文關鍵詞:Urban FloodingLow Impact DevelopmentDisaster Risk AssessmentFLO-2D flooding simulation modelAHP
相關次數:
  • 被引用被引用:3
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來超過當地防洪設計或土地承受能力所致的暴雨事件頻傳,每每一登場即造成規模不等的災情。而未來這樣的趨勢只會越亦頻繁,議題的核心可能並非是「抵抗洪水」,思考如何提升整體都市「承洪耐災」的能力也許更為關鍵。而低衝擊開發策略(Low Impact Development)作為導入可利用空間較不具彈性的都市地區,以強化都市治水減洪之功能已逐漸形成共識並已在相當多的研究中被證明其成效。
本研究將評估尺度拉至都市觀點進行討論,並以發展時間劃分為新舊市區兩種不同發展程度所呈現出的型態為基礎,探討運用低衝擊開發策略於不同空間型態之下所能發揮的減洪效果差異。透過建立風險地圖辨識風險成因,並選用三種低衝擊開發策略進行情境設計。有別以往僅就逕流量作為衡量減洪效果的依據,本研究藉由FLO-2D淹水模式模擬各情境淹水改善區位、深度、範圍與時間等減洪成效,以得出不同發展程度的地區各自最佳的策略組合,最後將模擬結果回歸至風險觀點,評估策略對於降低都市水災風險之可能貢獻。
研究結果顯示低衝擊開發策略對於都市暴雨之減緩,能在有限的空間內達到一定減洪與延遲的效果。而各策略間依照其本身如逕流減少、淹水延遲等優勢功能,在考量新舊市區因應不同開發程度所產生空間可利用的差異之下,其所能發揮的減洪效果亦明顯表現有別。有效掌握這些細微的差異將有助於運用低衝擊開發策略於降低都市淹水的頻率,期望成果提供未來通盤檢討擬定與防減災相關目標之決策時,能有具可操作性且符合發展狀態、實質開發及使用行為的參考與建議。

In recent years, extreme rainfall events that exceed flood-control standard or land carrying capacity have occurred more frequently, and each of them has caused disasters of varying scales. This trend is likely to be continued in the future. The core of the issue may not be "resistance to floods." It may be more important to think about how to improve the overall ability of the city to live with floods and disasters. Low-impact development (LID) is useful for urban runoff control and flood reduction in the urban areas, especially for areas where there is only limited space for new development, according to past research.
This study tries to develop an evaluation method at city scale to explore the effects of LID in Sanxia District. The district is further divided into two different development areas, which are new and old urban areas according to the development period, as case study to explore the differences in the effects of flood reductions using LID strategies. This study first identifies the elements of flood risk by establishing risk maps, and then develop three scenarios of LID strategies. Different from previous studies on LID strategies assessment, in which runoff amount is the basis for measuring the effect of flood reduction, this research applies FLO-2D flood model to simulate the change in flooding pattern in each scenario, including location, depth, range and time. The results from the simulation can be used as the basis for selecting the best LID strategies for each region with different development levels, and finally feedback the simulation results to the risk perspective for assessing the possible effectiveness of the strategy on reducing urban flood risks.
The results show that use the effects of LID strategy on urban flooding are significant in terms of runoff reduction and delay of the flooding time. In addition, according to each strategy’s advantages, and under the consideration of the difference in available space between the new and the old urban areas in response to different levels of development, there are also significant differences in the effects of flood reduction. Effectively measuring these subtle differences will help to understand how LID strategies could improve urban flood control effectiveness and efficiency.This study expects to be useful in disaster prevention or urban spatial planning when formulating relevant decisions in terms of flood risk reduction in the urban area.



謝誌
中文摘要
英文摘要
目錄 I
圖目錄 II
表目錄 V
第一章 緒論 1
第一節 研究動機與目的 1
第二節 研究內容與方法 3
第三節 研究範圍界定 4
第四節 研究流程 7
第二章 文獻回顧 8
第一節 都市發展與水文環境 8
第二節 都市空間減洪策略 14
第三節 水災風險與評估 26
第四節 都市水文模擬工具與應用 31
第三章 研究設計與方法 33
第一節 實證研究架構 33
第二節 研究方法 35
第四章 研究地區概述與資料建置 43
第一節 研究地區概述 43
第二節 研究資料建置 48
第五章 實證研究分析 69
第一節 建立三峽新舊市區水災風險地圖 69
第二節 低衝擊開發策略情境設計 82
第三節 情境淹水模擬與分析 92
第六章 結論與建議 106
第一節 研究結論 106
第二節 研究建議 108
參考文獻 111
附錄一 層級分析法(AHP)專家問卷 附1-1
附錄二 河川斷面寬度及深度 附2-1



一、英文文獻
1.Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16(3), 268-81.
2.Ahiablame, L. M., Engel, B. A., & Chaubey, I. (2012). Effectiveness of Low Impact Development Practices: Literature Review and Suggestions for Future Research, Water Air Soil Pollut, 223, 4253-4273.
3.Alberti, M., Booth, D., Hill, K., Coburn, B., Avolio, C., Coed, S., & Spirandelli, D. (2007). The impact of urban patterns on aquatic ecosystems: An empirical analysis in Puget lowland sub-basins. Landscape and Urban Planning, 80, 345-361.
4.Alexander, D. (2000). Confronting Catastrophe:New Perspectives on Natural Disaster. Oxford: Oxford University Press.
5.Andersen, T. K., & Shepherd, J. M. (2013). Floods in a changing climate. GeographyCompass, 7(2), 95–115.
6.Anderson, W. P., Kanaroglou, P. S., & Miller, E. J. (1996). Urban form, Energy, and the Environment: A Review of Issues, Evidence and Policy, Urban Studies, 33(1), 7-35.
7.Associated Programme on Flood Management[APFM] (2007). APFM Technical Document No. 6- Formulating A Basin Flood Management Plan- A Tool for Integrated Flood Management, WMO/GWP Associated Programme on Flood Management.
8.Burns, M. J., Fletcher, T. D., Walsh, C. J., Ladson, A. R., & Hatt, B. E. (2012). Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform. Landscape and urban planning, 105(3), 230-240.
9.Cervero, R., Kockelman, K. (1997). Travel Demand and the 3Ds: Density, Diversity, and Design. Transportation Research Part D: Transport and Environment, 2(3), 199-219.
10.Chen, Y. Ru., Yeh, C. H., & Yu, B. (2011). Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan. Natural Hazards, 59(3), 1261-1276.
11.Conzen, M. R. G. (1960). Alnwick, Northumberland: a study in town-plan analysis. Transactions and Papers (Institute of British Geographers), (27), iii-122. 
12.Cutter, S. L., Boruff, B. J , & Shirley, W. L (2003). Social Vulnerability to Environmental Hazard. Social Science Quarterly, 84(2), 242-261.
13.Cutter, S. L., Mitchell, J. T. and Scott, M. S. (2000). Revealing the vulnerability of people and places: A case study of Georgetown County. South Carolina. Annuals of the Association of American Geographers, 90(4), 713-37.
14.Danodaram, C., Giacomoni, M. H., Khedun, C. P., Holmes, H., Ryan, A., Saour, W., Zechman, E. M. (2010).Simulation of combined best management practices and low impact development for sustainable stormwater management, Journal of the American water resources association, 46(5).
15.Dewan, A. M. (2013). Floods in a megacity: geospatial techniques in assessing hazards,risk and vulnerability. New York: Springer.
16.Eakin, H. & Luers, A. L. (2006). Assessing the vulnerability of social- environmental systems. Annual Reviewof Environment and Resources, 31, 365-94.
17.Eakin, H., Lerner A. & Murtinho F. (2010). Adaptive capacity in evolving peri-urban spaces: Responses to flood risk in the Upper Lerma River Valley, Mexico. Global Environmental Change, 20(1), 14-22.
18.Fletcher, T. D., Shuster, W., Hunt, W. F., Ashley, R., Butler, D., Arthur, S. … Viklander, M. (2014). SUDS, LID, BMPs, WSUD and more–The evolution and application of terminology surrounding urban drainage, Urban Water Journal, 12(7), 525-542.
19.FLO-2D Software (2017). FLO-2D GDS Manual. eastern Arizona.
20.Foster, J., Lowe, A., & Winkelman, S. (2011). The value of green infrastructure for urban climate adaptation. Center for Clean Air Policy, 750, 1-52.
21.Gallopín, G. C. (2006). Linkage between vulnerability, resilience, and adaptive capacity. Global Environmental Change, 16(3), 293-303.
22.Godschalk, D. R. (1991). Disaster Mitigation and Hazard Management, Emergency Management:Principles and Practice for Local Government, 131-160.
23.Green, W. H. & Ampt, G. A. (1911). Studies on soil physics, part 1: The flow of air and water through soils, J. Agric. Sci., 4(1), 1-24.
24.Greve, A. I. (2012). Linking urban form, land cover pattern, and hydrologic flow regime in the Puget Sound Lowland. Urban ecosystems, 15(2), 437-450.
25.Haase, D. & Nuissl, H. (2007). Does urban sprawl drive changes in the water balance and policy? The case of Leipzig (Germany) 1870-2003. Landscape and Urban Planning, 80(1-2), 1-13.
26.Hammer, W. (1972). Handbook of System and Product Safety. Prentice-Hall.
27.Heramb, C. & Attarian, J. L. (2006). The Chicago Green Alley Handbook. Chicago: Department of Transportation.
28.Hoyer, J., Dickhaut, W., Kronawitter, L., & Weber B. (2011). Water Sensitive Urban Design Principles and Inspiration for Sustainable Stormwater Management in the City of the Future. Hamburg:HafenCity Universität.
29.IPCC (2001). Climate Change 2001: Working Group II: Impacts, Adaptation and Vulnerability . Glossary of Terms. The Physics Teacher, 3(1), 45.
30.IPCC (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
31.IPCC, (2014). Climate Change 2013: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
32.Jacob, J. S. & Lopez, R. (2009). Is Denser Greener? An Evaluation of Higher Density Development as an Urban Stormwater‐Quality Best Management Practice. JAWRA Journal of the American Water Resources Association, 45(3), 687-701.
33.Kawata, Y. (2002). Potential of hugh flood disasters in density populated urban areas in Japan, The 2nd Workshop on The Development of Integrated Disaster Reduction Systems on Compound Urban Floodings, Kobe, 23-27.
34.Liao, K. H., Le, T. A., & Van Nguyen, K. (2016). Urban design principles for flood resilience: Learning from the ecological wisdom of living with floods in the Vietnamese Mekong Delta. Landscape and Urban Planning, 155, 69-78.
35.Lloyd, S.D., Wong, T. H. F. & Chesterfield, C. J. (2002). Water sensitive urban design - a stormwater management perspective.
36.Marshall, S. (2005). Urban Pattern Specification Solutions, Institute of Community Studies, London.
37.McCuen, R. et al. (1996). Hydrology, FHWA-SA-96-067, Federal Highway Administration, Washington, DC.
38.Mitchell, J. K. (1998). Hazards in changing cities, Applied Geography, 18(1), 1-6.
39.Mora, S. C. & Vahrson, W. G. (1994). Macrozonation Methodology for Landslide Hazard Determination. Bulletin of the Association of Engineer Geologists, 31(1), 49-58. 
40.Moudon, A. V. (1997). Urban morphology as an emerging interdisciplinary fied. Urban Morphology , 1, 3-10.
41.Nguyen, D. D. (2013). Size, Shape and Dispersion: Urban form evolution in Saigon River Basin and its impacts on hydrologic performance from 1990 to 2010. Urban form & hydrologic performance in Saigon River Basin 49th ISOCARP Congress.
42.Nielsen, M. B. & Jensen, M. B. (2015). Land cover in single-family housing areas and how it correlates with urban form. Urban Ecosyst, 18(4), 1103-1123.
43.O’Brien, J. S., Julien, P. Y. & Fullerton, W. T. (1993), Two-dimensional water flood and mudflow simulation. Journal of Hydraulic Engineering, 119(2), 244-261.
44.Park, C. C. (1991). Environmental Hazards. London: Macmillan Education.
45.Parker, D. (Ed.). (2000). Floods. London: Routledge.
46.Pauleit, S., Ennos, R. & Golding, Y. (2005). Modeling the environmental impacts of urban land use and land cover change-a study in Merseyside, UK, Landscape and Urban Planning, 71, 295-310.
47.Prince George's County (Md.). Department of Environmental Resources. Programs & Planning Division. (1999). Low-impact development: an integrated design approach. Retrived from:https://www.epa.gov/
48.Quan, R. S. (2014). Rainstorm waterlogging risk assessment in central urban area of Shanghai based on multiple scenario simulation. Natural Hazard, 73(3), 1569-1585
49.Rygel, L., O’sullivan, D., & Yarnal, B. (2006). A method for constructing a social vulnerability index: an application to hurricane storm surges in a developed country. Mitigation and adaptation strategies for global change, 11(3), 741-764.
50.Saaty, T. L. (1980). The Analytic Hierarchy Process. McGraw-Hill, Inc.
51.Schueler, T. (2003). Impact of impervious cover on aquatic systems.Center for Watershed Protection. Ellicott City, MD.
52.Smith, K. (2001). Environmental Hazards:Assessing Risk and Reducing Disaster. London: Taylor and Francis Group.
53.Tsai, Y. H. (2005). Quantifying Urban Form: Compactness versus ‘Sprawl’, Urban Studies, 42(1), 141–161.
54.U.S. Department of Housing and Urban Development[HUD] (2003). The practice of low impact development. Office of Policy Development and Research. Washington, D.C. Report prepared by NAHB Research Center, Inc.
55.Unified Facilities Crireria[UFC] (2010). Low Impact Development. Retrived from:https://www.wbdg.org/
56.United Nations International Strategy for Disaster Reduction[UNISDR] (2004). Living with Risk: A global review of disaster reduction initiatives . United Nations Publications.
57.United Nations International Strategy for Disaster Reduction[UNISDR] (2002). Guidelines for Reducing Flood Losses:United Nations Office for Disaster Risk Reduction. Geneva, Switzerland:United Nations Office for Disaster Risk Reduction.
58.United Nations International Strategy for Disaster Reduction[UNISDR] (2009). Terminology of Disaster Risk Reduction. Geneva, Switzerland:United Nations Office for Disaster Risk Reduction.
59.United States Environmental Protection Agency[USEPA] (2000). Low Impact Development(LID), A Literature Review. Retrived from:https://www.epa.gov/
60.Victorian Stormwater Committee (1999). Urban stormwater:best-practice environmental management guidelines. CSIRO publishing.
61.Villagra’n de Leon, J. C. (2006). Vulnerability a Conceptual and Methodological Review, Bonn:United Nations University, Institute for Environment and Human Security.
62.Wong, T. H. F. (2006). An Overview of Water Sensitive Urban Design Practices in Australia, Water Practice & Technology, 1(1).
63.Woods-Ballard, B., Wallingford, H. R., Kellagher, R., Wallingford, H. R., Black, P. M., & Jefferies, V. C. (2007). The SuDS manual(Vol. 697). London: Ciria.
64.Woods-Ballard, B., Wallingford, H. R., Kellagher, R., Wallingford, H. R., Black, P. M., & Jefferies, V. C. (2015). The SuDS manual(Vol. 753). London: Ciria.
65.Zimmerman, M. J., Waldron, M. C., Barbaro, J. R., Sorenson, J. R. (2010). Effects of low-impact-development (LID) practices on streamflow, runoff quantity, and runoff quality in the ipswich river basin, massachusetts: a summary of field and modeling studies, US Geol. Surv., Circ, 1361.


二、中文文獻
1.三峽區公所(2015)。三峽區地區災害防救計畫。新北:三峽區公所。
2.內政部建築研究所(2012)。社區及建築基地減洪防洪規劃手冊。臺北:內政部建築研究所。
3.內政部消防署(2015)。中央災害應變中心蘇迪勒颱風災害應變處置報告第9報。臺北:內政部消防署。
4.內政部營建署(2015)。「水環境低衝擊開發設施操作手冊編制與案例評估」委託技術服務案總結報告。臺北:內政部營建署。
5.內政部營建署(2015)。水環境低衝擊開發設施操作手冊。臺北:內政部營建署。
6.王瑋(2014)。都會區淹水耐災策略之評估-以新北市瓦窯溝為例。國立臺灣大學生物環境系統工程研究所碩士論文,臺北。
7.包匡(2012)。都市舊市區民眾避難時間模擬之研究-以新莊區為例。設計與環境學報,13,1-15。
8.行政院農委會水土保持局(2005)。水土保持手冊。臺北:行政院農委會水土保持局
9.何宇申(2013)。Flo-2D應用於中壢都會區的淹水分析。國立臺灣大學生物環境系統工程學研究所碩士論文,臺北。
10.吳杰穎、李玉生(2010)。非結構式減災措施運用於空間規劃與管理之研究。建築學報,72,169-186。
11.吳杰穎、邵珮君、林文苑、柯于璋、洪鴻智、陳天建、陳亮全、黃智彥、詹士樑、薩支平(2012)。災害管理學辭典。臺北:五南書局。
12.吳杰穎、黃昱翔(2011)。颱洪災害脆弱度評估指標之建立:以南投縣水里鄉為例。都市與計劃,38(2),195-218。
13.吳瑞賢、林松青、蘇文瑞、洪明瑞、廖瑋璿、廖偉信、張哲豪、韋家振(2008)。天然災害防治導論。新北:全華圖書股份有限公司。
14.李欣輯、楊惠萱、廖楷民、蕭代基(2010)。水災社會脆弱性指標之建立。建築與規劃學報,10(3),163-182。
15.沈丹、張明亮(2006),SWMM模型在城市生命體循環系統中的應用,大連理工大學海岸及近海工程國家重點實驗室
16.林美君、蘇明道、蔡博文、陳敬宏、劉惠玲(2012)。統計區分類系統在洪災事件之人口暴露量推估。農業工程學報,58(3),40-49。
17.林郁珊(2017)。低衝擊開發策略之耐水患都市設計評估研究。國立成功大學都市計畫研究所碩士論文,臺南。
18.林漢良(2015)。災害風險評估理論與實務—劃設永久安置基地之應用。臺南:國立成功大學規劃與設計學院。
19.林漢良、謝俊民(2008)。建立易致災地區之安全建地劃設機制與準則。臺北:內政部營建署城鄉發展分署。
20.洪鴻智、陳令韡(2012)。颱洪災害之整合性脆弱度評估—大甲溪流域之應用。地理學報,(65),79-96。
21.洪鴻智、陳羚怡(2007)。洪災風險評估與災害風險稅課徵—以台北市為例。臺灣土地研究,10(2),95-125。
22.徐硯庭(2014)。低衝擊開發運用在高都市化地區的減洪效益:以新北市中永和地區為例,國立臺灣大學土木工程學研究所碩士論文,臺北。
23.桃園縣政府水務局(2012)。鳶山堰水庫蓄水範圍及臨近集水區水質保護設施規劃計畫。桃園:桃園縣政府水務局。
24.馬士元(2002)。整合性災害防救體系架構之探討,國立臺灣大學建築與城鄉研究所博士論文,臺北。
25.國家災害防救科技中心(2015)。2015年蘇迪勒颱風災害調查彙整報告。臺北:災防中心。
26.張倉榮、許銘熙、賴進松、譚義績、潘宗毅、張向寬(2011)。台灣脆弱度及風險地圖製作與整合應用(2/2),臺北市:經濟部水利署。
27.張學聖、廖晉賢 (2013)。臺南市土地使用計畫之水災風險分析。都市與計劃,40(1),59-79。
28.張學聖、劉佩佳(2015)。考量空間關聯之地區洪災脆弱性研究以雲林縣易淹水地區為例。地理學報,79,1-29。
29.許庭綺(2016)。山區聚落之颱風災害風險評估分析—以高雄市為例。國立成功大學都市計劃研究所碩士論文,臺南。
30.許銘峰(2008)。台灣地區都市型態特徵之比較研究。國立成功大學都市計劃研究所碩士論文,臺南。
31.陳中豪、陳文福(2007)。分析階層程序法應用於坡地社區災害風險分析之研究-以臺北市山坡地老舊聚落為例。坡地防災學報,6(1),17-32。
32.陳令韡(2012)。大甲溪流域颱洪脆弱度評估:分析網路程序法之應用。國立臺北大學不動產與城鄉環境學系碩士論文,臺北。
33.陳加榮(2011)。都市次與氣候變亦對都會地區淹水之衝擊評估—以台中都會區為例。國立臺灣大學生物環境系統工程學研究所碩士論文,臺北。
34.陳亮全、陳海立(2009)。易致災都市空間發展之探討:以臺北盆地都市水災形成為例。都市與計劃,34(3),293-315。
35.陳品先(2011)。以水災風險管理觀點評估土地使用調洪策略之研究-以鹽水溪流域為例。國立成功大學都市計畫研究所碩士論文,臺南。
36.陳建智(2014)。以淹水模式評估保水減洪策略之成效-臺中市筏子溪流域個案研究。國立臺灣大學理學院地理環境資源學研究所碩士論文,臺北。
37.陳柏蒼(2016)。災害管理與實務。出版:五南出版社。 
38.陳禹銘、蘇昭郎、樊國恕(2009)。災害風險評估研究之探討。危機管理學刊,6(1),41-50。
39.陳起鳳、陳志方、莫懿美(2016)。都市低衝擊開發之綠屋頂應用與效益。中華技術學刊,46,46-57。
40.游景雲、邱昱嘉、陳葦庭、徐佳鴻、王順加(2016)。運用低衝擊開發於都市治水策略之探討。土木水利,43(5),19-31。
41.馮正一、劉怡安、張育瑄(2009)。應用TRIGRS分析集水區中尺寸坡地入滲與穩定性。水土保持學報,41(3),339- 356。
42.黃美純、賴俊良(1986)。雨水管理估算方法之應用與土地使用規劃。都市與計劃,13,173-198。
43.黃書禮、詹士樑、洪鴻智(2007)。國土保育地區防災空間規劃策略之整合型規劃─國土保育地區防災空間規劃。臺北:內政部營建署。
44.新北市政府水利局(2012)。透水保水設施規劃參考手冊。新北:新北市政府水利局。
45.楊靜怡(2009)。颱洪災害回復力之評估:以台中市、台中縣龍井鄉與東勢鎮為例。國立臺北大學不動產與城鄉環境學系碩士論文,臺北。
46.經濟部水利署(2016)。中華民國一O五年臺灣水文年報第二部分—河川水位及流量。臺北:經濟部水利署臺北辦公處。
47.經濟部水利署水利規劃試驗所(2006)。區域排水整治及環境營造規劃參考手冊。臺北:經濟部水利署。
48.經濟部水資源局(2000)。水文設計應用手冊。臺北:經濟部。
49.詹士樑、黃書禮、王思樺(2003)。台北地區洪水災害風險分區劃設之研究。都市與計劃,30(4),263-280。
50.鄒克萬、黃書偉(2007)。都市土地利用變遷對自然環境衝擊之空間影響分析。地理學報,(48),1-18。
51.雷祖強、陳憲宗、陳昶憲、鍾侑達、王欣萍、靳鈞評(2017)。水災災害風險評估模式之研究-以臺中市易淹水範圍為例。臺灣水利,65(2)。
52.廖朝軒、蔡燿隆(2002)。從健全都市水環境談雨水滯蓄措施之應用。水資源管理季刊,4(2),8-18。
53.褚志鵬(2009)。Analytic Hierarchy Process Theory層級分析法(AHP)理論與實作。國立東華大學企業管理學系教學講義。 
54.劉格非(2014)。水環境低衝擊開發設施操作手冊編制與案例評估計畫。臺北:內政部營建署。
55.鄧振源、曾國雄(1989)。層級分析法(AHP)的內涵特性與應用(上)。中國統計學報,27(6),13707-13724。
56.盧鏡臣、陳永明、張志新、郭彥廉(2009)。台灣在氣候及環境變遷下之淹水風險評估—鄉鎮層級的評估。臺北:國家災害防救科技中心。
57.蕭新煌、周素卿、黃書禮(2017)。臺灣的都市氣候議題與治理。出版:國立臺灣大學出版中心。
58.蕭煥章(2008)。水災脆弱性評估模式之建立-以汐止市為例。中國文化大學地理學研究所博士學位論文,臺北。
59.謝宗霖(2013)。都會區淹水模式之比較利用。國立臺灣大學生物環境系統工程學研究所碩士論文,臺北。
60.謝豐澤(2012)。都市化與氣候變遷對都會地區淹水之衝擊評估:以台中都會區為例。國立臺灣大學生物環境系統工程學研究所碩士論文,臺北。
61.薩支平(2000)。淹水潛勢資料在土地使用規劃與管理之初步應用研究。臺北:內政部建築研究所。
62.蘇柏誠(2013)。屋頂綠化保水效能之降雨逕流水文模式建立。國立臺灣海洋大學河海工程學系碩士論文,臺北。
63.龔楚媖、顏葆琳、李宗融、吳宜昭、于宜強(2015)。台灣極端降雨事件:1992-2013年重要事件彙整,新北市:國家災害防救科技中心。
64.行政院農業委員會農業試驗所(2010)。土壤資源空間資料標準,臺北:農業試驗所。

電子全文 電子全文(網際網路公開日期:20230830)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊