跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/21 03:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉明軒
研究生(外文):Ming-Hsuan Liu
論文名稱:具備氧化鋅奈米粒子電子傳輸層無機鹵化鉛鈣鈦礦量子點發光二極體之研製
論文名稱(外文):Fabrication and Characterization of Inorganic Lead Halide Perovskite Quantum Dot Light Emitting Diodes with Electron Transporting Zinc Oxide Nanoparticles
指導教授:黃俊元黃俊元引用關係
指導教授(外文):Chun-Yuan Huang
學位類別:碩士
校院名稱:國立臺東大學
系所名稱:應用科學系
學門:自然科學學門
學類:其他自然科學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:59
中文關鍵詞:鈣鈦礦氧化鋅奈米粒子無機銫鹵化鉛
外文關鍵詞:PerovskiteZnic oxide nanoparticlesCsPbBr3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
發光二極體的發展改變了現今的生活型態,汰換了白熾燈等傳統光源,應用範圍涵蓋照明系統、背光源、顯示系統與行動設備等,被喻為二十一世紀最受矚目之技術。在未來追求高畫質、高彩度顯示器時,擁有窄半高寬、高色純度的量子點技術,量子點發光二極體將是新一波顯示器的趨勢。
作為顯示器發光層開發之無機發光材料,選用膠體溶液化學熱注入法合成全無機鹵化鉛鈣鈦礦量子點,藉由調控VII A族陰離子不同的比例,可合成出綠色純溴離子的鈣鈦礦量子點至紅色溴碘離子摻雜鈣鈦礦量子點;以及綠色純溴離子鈣鈦礦量子點至藍色溴氯摻雜鈣鈦礦量子點,涵蓋所有可見光光譜區的顏色,無機鹵化鉛鈣鈦礦量子點溶液經過純化能獲得極窄的半高寬,本研究合成出四種顏色的量子點,其半高寬藍光:16.6 nm、藍綠光:17.4 nm、綠光:21.4 nm、橘光:25.6 nm,相比於硒化鎘量子點材料而言低於30 nm是非常窄非常佳條件的;對於螢光粉材料又是擁有更佳的色純度。而無機鹵化鉛鈣鈦礦量子點製成元件放光顏色的表現,與溶液的螢光位置非常接近,雖然些許位移,猜測是受到元件其他層的影響,但依舊能以溶液螢光波長判斷元件發光顏色。
在元件製作上,本團隊以全製程為目標發展,本研究除了合成發光層的無機鹵化鉛鈣鈦礦量子點也包含了元件電子傳輸層的氧化鋅奈米粒子,而氧化鋅奈米粒子的粒徑大小決定了能隙的大小。本篇論文提供了一個方法,合成出不同粒徑的氧化鋅奈米粒子,小粒徑的氧化鋅奈米粒子,能隙位於3.32 eV~7.1 eV;大粒徑的氧化鋅奈米粒子,能隙位於3.52 eV~7.0 eV,能看出粒徑越小能隙越大,有助於陰極的電子注入,作為電洞阻擋層更有效阻擋電洞的流失,故此在粒徑方面越小對元件的效率更能有所提升。
本研究確立了,三種不同氧化鋅奈米粒子粒徑的製作方法,可配合不同發光層材料搭配合適的氧化鋅奈米粒子,使元件擁有更好的效率;並且在元件上配合氧化鋅奈米粒子與無機鹵化鉛鈣鈦礦量子點作為第四種結構,有機/無機層結構,在極少數論文的支持下,成功放出綠光,雖然亮度僅有60 cd/m2,在離成為產品還有一大段距離,但這絕對是一個非常有潛力並且有發展前途的成果。
The development of light-emitting diodes has changed the way of life today, the replacement of light bulb and other traditional light source. The scope of application covers lighting systems, backlight, display systems and mobile devices, has been hailed as the twenty-first century The most watched technology. QLED (Quantum Dot Light-emitting diode), which has a narrow half-width, high-purity purity quantum dot technology. It will be a new wave of displays in the future when pursuing high-quality, high-performance displays.
Perovskite CsPbX3 (X = Cl, Br, I) was synthesized by chemical hot injection method using colloidal solution as the inorganic luminescent layer. Color of green CsPbBr3 to red CsPbBrxI (3-x) can be synthesized by regulating the different proportions of Group VII A anions; and green CsPbBr3 to blue CsPbCl(3-x) Brx, which covers the color of all visible spectral regions. The inorganic lead halide perovskite quantum dots solution is purified to obtain a very narrow half width (FWHM, Full width at half maximum). In this study, we synthesized four color quantum dots, its half width and width blue: 16.6 nm blue and green: 17.4 nm green: 21.4 nm orange: 25.6 nm. Which is very narrow compared to the CdSe quantum dots material; it also has better color purity for the phosphor material. And then inorganic lead halide perovskite quantum dots made of components of the performance of light color, and the solution is very close to the fluorescent position. Although a little shift, speculation is affected by the other layers of the component, but still can be used to determine the wavelength of the solution fluorescent light color components.
In the production of components, our team to the whole fabrication as the goal of development. In this study, in addition to the synthesis of light-emitting layer of inorganic lead halide perovskite quantum dots also contains the element of the electron injection layer of zinc oxide nanoparticles. However, the size of zinc oxide nanoparticles determines the energy gap. This paper provides a method for the synthesis of different sizes of zinc oxide nanoparticles. Small size of zinc oxide nanoparticles with energy gap at 3.32 eV~7.1 eV, Big size of zinc oxide nanoparticles with energy gap at 3.52 eV~7.0 eV. It can be found that the smaller the particle size, the lower the energy gap contributes to the electron injection of the cathode. As the hole blocking layer more effectively block the loss of holes, so the smaller the particle size of the components of the efficiency can be improved.
This work established three different parameter sets for the production of zinc oxide nanoparticles. Can match the different luminescent layer material with the appropriate zinc oxide nanoparticles, so that components have better efficiency. In the QLEDs with zinc oxide nanoparticles and inorganic lead halide perovskite quantum dots by type IV structure with organic hole- and inorganic electron-transport layers. With the support of very few papers, QLEDs successful release of green light. Even the brightness is only 60 cd/m2. There is still a long distance away from becoming a product, but it is definitely a very promising outcome.
第一章 序論
1-1 前言
1-2 氧化鋅的應用
1-3 鈣鈦礦的應用
1-4 研究動機
第二章 理論基礎與文獻回顧
2-1 氧化鋅的應用
2-1-1 前言
2-1-2 氧化鋅奈米粒子最佳粒徑
2-2 鈣鈦礦量子點的應用
2-2-1 前言
2-2-2 鈣鈦礦量子點合成
2-2-3 鈣鈦礦量子點穩定性
2-2-4 鈣鈦礦量子點應用
第三章 實驗方法與步驟
3-1 實驗流程
3-1-1 蝕刻ITO圖形製作
3-1-2 氧化鋅奈米粒子
3-1-3 製作鈣鈦礦量子點
3-2 實驗系統
3-2-1 旋轉塗佈儀
3-2-2 熱蒸鍍系統
3-2-3 螢光光譜儀
3-2-4 紫外/可見光分光光譜儀
3-2-5 氧電漿系統
3-2-6 高真空抽氣系統
3-2-7 真空偵測壓力設備
3-2-8 穿透式電子顯微鏡 (Transmission electron microscope, TEM)
3-2-9 紫外光電子能譜儀 (Ultraviolet Photoelectron Spectroscopy, UPS)
3-3 實驗藥品與材料
3-3-1基板材料
3-3-2氧化鋅研究藥品
3-3-3鈣鈦礦研究藥品
3-4 實驗步驟
3-4-1 蝕刻基板
3-4-2 合成氧化鋅奈米粒子
3-4-2-1合成ZnO NPs (大)-合成18小時
3-4-2-2合成ZnO NPs (中)
3-4-2-3合成ZnO NPs (小)
3-4-3 合成鈣鈦礦量子點
3-4-4 元件塗佈
第四章 分析與鑑定
4-1 氧化鋅奈米粒子
4-1-1前言
4-1-2氧化鋅奈米粒子粒徑測量
4-1-3氧化鋅奈米粒子穩定性測試
4-1-4氧化鋅奈米粒子塗佈測試
4-1-5氧化鋅奈米粒子能隙分布
4-1-6氧化鋅奈米粒子應用在OLEDs元件(大比小需要結構跟圖)
4-2 鈣鈦礦量子點
4-2-1 前言
4-2-2鈣鈦礦量子點粒徑測量
4-2-3鈣鈦礦量子點穩定性
4-2-4鈣鈦礦量子點不同比例
4-2-5鈣鈦礦量子點塗佈及烤乾測試
4-2-6鈣鈦礦量子點元件測量
第五章 總結論
5-1氧化鋅奈米粒子
5-2無機鈣鈦礦量子點
第六章 參考文獻
[1] S. Bai, Z. Yuan and F. Gao, “Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications”, J. Mater. Chem. C , 4, 2016, pp. 3898-3904
[2] H. Sasabe and J. Kido, “Multifunctional materials in high-performance OLEDs: challenges for solid-state lighting”, Chem. Mater. 23, 2011 , pp.621–630
[3] M.J. Murcia, D.L. Shaw, H. Woodruff, C.A. Naumann, B.A. Young, and E.C. Long, “Facile sonochemical synthesis of highly luminescent ZnS-shelled CdSe quantum dots”, Chem. Mater. 2006, 18, pp. 2219-2225
[4] A.H. Battez, R. González, J.L. Viesca, J.E. Fernández , J.M.D. Fernández, A. Machado, R. Chou, J. Riba, “CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants.” Elsevier B.V, Wear. 2008, 265, pp. 422–428
[5] C.A. Wilkie; A.B. Morgan. “Fire retardancy of polymeric materials”, Second Ed.. CRC press. 2009. ISBN 978-1-4200-8399-6.
[6] Nav Bharat Metallic Oxide Industries Pvt. Limited. Applications of ZnO.Access date January 25, 2009.
[7] W.J.E. Beek, M.M. Wienk, and R.A.J. Janssen, "Efficient hybrid solar cells from Zinc Oxide nanoparticles and a conjugated polymer," Adv. Mater. 2004, 12, pp. 1009-1013
[8] K.H. Lee, J.H. Lee, H.D. Kang, B. Park,† Y. Kwon, H. Ko,C. Lee,‡ J. Lee, and H. Yang "Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots" Acs, Nano. 2014, 5, pp. 4893–4901
[9] J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, and A. Nathan, ACS Photonics. 2016, 3, pp. 215−222 ()
[10] W.F. Forrester & R.M. Hinde. "Crystal structure of barium titanate.", Nature. 1945, 156, pp. 484–485.
[11] J.S. Manser, J.A. Christians, and P.V. Kamat "Intriguing optoelectronic properties of metal halide perovskites". Chem. Rev., 2016, 116, pp. 12956–13008
[12] B.A. Koscher, N.D. Bronstein, J.H. Olshansky, Y. Bekenstein, and A.P.A. Visatos, "Surface- vs diffusion-limited mechanisms of anion exchange in CsPbBr3 nanocrystal cubes revealed through kinetic studies", J. Am. Chem. Soc. 2016, 138,pp. 12065−12068
[13] J.D. Roo, M. Ibáñez, P. Geiregat, G. Nedelcu, W. Walravens, J. Maes, J. C. Martins, I.V. Driessche, M.V. Kovalenko, and Z. Hens, "Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals", ACS Nano. 2016, 10, pp. 2071−2081
[14] M. Meyns, M. Perálvarez, A. H. Jungemann, W. Hertog, M. Ibáñez, R. Nafria, A. Genç, J. Arbiol, M.V. Kovalenko, J. Carreras, A. Cabot, and A.G. Kanaras, "Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs", ACS Appl. Mater. Interfaces. 2016, 8, pp. 19579−19586
[15] A. Swarnkar, R. Chulliyil, V.K. Ravi, M. Irfanullah, A. Chowdhury, and A. Nag, "Colloidal CsPbBr3 perovskite nanocrystals: luminescence beyond traditional quantum dots", Angew. Chem. Int. Ed. 2015, 54, pp.1 – 6
[16] S. Wei, Y. Yang, X. Kang, L. Wang, L. Huang and D. Pan, "Room-temperature and gram-scale synthesis of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals with 50–85% photoluminescence quantum yields", Chem. Commun. 2016, 52, pp. 7265-7268
[17] J.B. Hoffman, A.L. Schleper, and P.V. Kamat, "Transformation of sintered CsPbBr3 nanocrystals to cubic CsPbI3 and gradient CsPbBrxI3−x through halide exchange", J. Am. Chem. Soc. 2016, 138, pp. 8603−8611
[18] E. Yassitepe, Z. Yang, O. Voznyy, Y. Kim, G. Walters, J.A. Castañeda, P. Kanjanaboos, M. Yuan, X. Gong, F. Fan, J. Pan, S. Hoogland, R. Comin, O.M. Bakr, L.A. Padilha, A.F. Nogueira, and E.H. Sargent, "Amine-free synthesis of cesium lead halide perovskite quantum dots forefficient light-emitting diodes", Adv. Funct. Mater. 2016, 26, pp.8757–8763
[19] A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka "Organometal halide perovskites as Visible-light sensitizers for photovoltaic cells". J. Am. Chem. Soc. 2009, 131 (17), pp. 6050–6051
[20] M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.P.C. Baena, W.R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, “Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance”, Science. 354, pp. 206-209
[21] V. Sivaram, S.D. Stranks and H.J. Snaith "Outshining silicon". Scientific American. 2015, 313, pp. 54-59.
[22] M. Meyns, M. Perálvarez, A.H. Jungemann, W. Hertog, M. Ibáñez, R. Nafria, A. Genç, J. Arbiol, M.V. Kovalenko, J. Carreras, A. Cabot, and A.G. Kanaras, "Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs", ACS Appl. Mater. Interfaces. 2016, 8, pp.19579−19586
[23] E.A. Meulenkamo, “Synthesis and growth of ZnO nanoparticles”, J. Phys. Chem. 1998, 102, pp 5566–5572
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top