跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/15 06:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏銘諒
研究生(外文):Ming-Liang Wei
論文名稱:聚乙二醇修飾之石墨烯場效電晶體在高鹽度溶液偵測多巴胺
論文名稱(外文):Using Polyethylene glycol-Modified Graphene-Based Field-Effect Transistor To Detect Dopamine in high salt solution
指導教授:陳逸聰陳逸聰引用關係
指導教授(外文):Yit-Tsong Chen
口試委員:陳啟東李博仁
口試委員(外文):Chii-Dong ChenBor-Ran Li
口試日期:2018-01-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:70
中文關鍵詞:多巴胺石墨烯場效電晶體生物感測器德拜-休克耳長度屏蔽效應聚乙二醇
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
多巴胺(dopamine, DA)是重要的神經傳導物質,負責神經細胞的訊息傳遞,並且與許多疾病有關。然而,在這些病患血液或尿液中,多巴胺的濃度非常低,而現有的電化學感測器對多巴胺的偵測不夠靈敏,要用於檢測這些疾病是非常困難的。在本研究中,我們利用單層石墨烯(graphene)來製備場效電晶體生物感測器(field-effect transistor biosensor),在場效電晶體上修飾去氧核醣核酸適體(DNA-aptamer),建構出一個高靈敏度感測器。
自石墨烯被發現以來,它的高載子遷移率、高化學穩定性、高導熱、高導電性、可撓性、高機械強度,以及高透光率,使它受到許多領域的研究,它所具有的廣泛應用性也備受關注,因此本研究以單層石墨烯在石英基板表面製成場效電晶體來偵測低濃度多巴胺。
在使用石墨烯場效電晶體偵測多巴胺時,會遇到德拜-休克耳屏蔽效應(Debye-Hückel screening effect)的問題,即因為溶液的鹽離子濃度過高,使多巴胺的電場被離子屏蔽,導致偵測困難,在此我們使用聚乙二醇(polyethylene glycol)來克服,在石墨烯場效電晶體表面修飾聚乙二醇,減少德拜-休克耳屏蔽效應,使多巴胺的電場可以被石墨烯場效電晶體偵測到。本研究可以做到在高鹽度的溶液中偵測到10-9 M的多巴胺,並嘗試偵測稀釋後的胎牛血清,此高靈敏度感測器可提供一個新的生物感測平台,未來可應用在人體血液、尿液,即時偵測與多巴胺異常相關的疾病。
Dopamine is an important neurotransmitter, which is responsible for the transmission of nerve cells and is also associated with many diseases of nervous system. However, the existing electrochemical sensors are not sensitive enough to detect the trace amount of dopamine in human blood or urine. Hence, an ultra-sensitive biosensor to detect dopamine-related neurologic diseases at an early stage is needed.
Field-effect transistors have been studied with its sensitive biosensing applications over a decade. Besides, graphene has represented great potential in scientific research with its high carrier mobility, high chemical stability, high thermal conductivity, high conductivity, flexibility, high mechanical strength, and high light transmittance. Therefore, in this study, we fabricated graphene-based field-effect transistors (G-FETs) with single-layered graphene on the quartz substrate and modified DNA-aptamer on the G-FET surface to detect low concentrations of dopamine.
One major challenge of FET-based biosensors is to detect analyte in a high salt buffer. In term of Debye-Hückel screening effect, the electric-field of analyte is attenuated by ions and results in reduced signals. To overcome this problem, we modified polyethylene glycol (PEG) on the surface of a G-FET to decrease Debye-Hückel screening. With the capability of detecting 1 nM dopamine in 3× PBS solution, we proved that G-FETs can be employed as a highly sensitive biosensing platform for dopamine detection.
目錄

口試委員會審定書 #
中文摘要 i
ABSTRACT ii
目錄 iii
圖目錄 vi
Chapter 1 導論 1
1.1 石墨烯簡介 1
1.1.1 石墨烯發展背景 2
1.1.2 石墨烯之物理特性 3
1.2 場效電晶體感測器 3
1.3 多巴胺 5
1.4 研究動機 5
Chapter 2 文獻回顧 7
2.1 石墨烯之結構 7
2.2 石墨烯之製備 11
2.2.1 機械剝離法(mechanical exfoliation) 11
2.2.2 氧化石墨烯還原(reduction of graphene oxide) 12
2.2.3 液相剝離法(liquid-phase exfoliation, LPE) 13
2.2.4 碳化矽磊晶成長法(epitaxial growth) 14
2.2.5 化學氣相沉積法(chemical vapor deposition, CVD) 15
2.2.6 石墨烯製備方法比較 16
2.3 石墨烯檢測方法 17
2.3.1 拉曼光譜(Raman spectroscopy) 17
2.3.2 光學散射 22
2.4 石墨烯場效電晶體生物感測器 23
2.5 德拜-休克耳屏蔽效應 27
2.6 聚乙二醇 28
Chapter 3 材料與方法 30
3.1 石墨烯場效電晶體元件製作 30
3.1.1 熱蒸鍍金屬電極 30
3.1.2 轉置石墨烯 31
3.1.3 退火處理 31
3.1.4 微流道系統 32
3.1.5 石墨烯場效電晶體表面修飾 33
3.2 生物感測平台 35
3.2.1 液相閘極量測 35
3.2.2 量測裝置 36
3.3 檢驗儀器 38
3.3.1 光學金相顯微鏡 38
3.3.2 原子力顯微鏡(atomic force microscope, AFM) 38
3.3.3 共軛焦顯微鏡 39
3.3.4 拉曼光譜儀 40
Chapter 4 結果與討論 42
4.1 石墨烯品質鑑定 42
4.2 場效電晶體基礎量測 43
4.3 表面修飾鑑定 45
4.3.1 1-芘丁酸修飾鑑定 45
4.3.2 N-羥基琥珀醯亞胺及1-乙基-(3-二甲基氨基丙基)碳醯二亞胺修飾鑑定 46
4.3.3 適體及聚乙二醇修飾鑑定 47
4.4 液相量測 48
4.4.1 德拜-休克耳屏蔽效應 48
4.4.2 聚乙二醇功效檢測 49
4.4.3 求得狄拉克點 50
4.4.4 適體與聚乙二醇比例最佳化 52
4.4.5 聚乙二醇應用在石墨烯場效電晶體之極限 52
4.4.6 生物樣品實測 55
4.5 聚乙二醇之原理探討 58
Chapter 5 結論 62
參考文獻 64
參考文獻
1.Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat Mater 2007, 6 (3), 183-91.
2.Mermin, N. D., Crystalline Order in Two Dimensions. Physical Review 1968, 176 (1), 250-254.
3.Wallace, P. R., The Band Theory of Graphite. Physical Review 1947, 71 (9), 622-634.
4.Morgan, A. E.; Somorjai, G. A., Low Energy Electron Diffraction Studies of Gas Adsorption on Platinum (100) Single Crystal Surface. Surf Sci 1968, 12 (3), 405-&.
5.May, J. W., Platinum Surface Leed Rings. Surf Sci 1969, 17 (1), 267-&.
6.Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-669.
7.Schriver, M.; Regan, W.; Gannett, W. J.; Zaniewski, A. M.; Crommie, M. F.; Zettl, A., Graphene as a Long-Term Metal Oxidation Barrier: Worse Than Nothing. Acs Nano 2013, 7 (7), 5763-5768.
8.Chen, S. S.; Brown, L.; Levendorf, M.; Cai, W. W.; Ju, S. Y.; Edgeworth, J.; Li, X. S.; Magnuson, C. W.; Velamakanni, A.; Piner, R. D.; Kang, J. Y.; Park, J.; Ruoff, R. S., Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy. Acs Nano 2011, 5 (2), 1321-1327.
9.Zhu, J. X.; Yang, D.; Yin, Z. Y.; Yan, Q. Y.; Zhang, H., Graphene and Graphene-Based Materials for Energy Storage Applications. Small 2014, 10 (17), 3480-3498.
10.Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L., Ultrahigh electron mobility in suspended graphene. Solid State Commun 2008, 146 (9-10), 351-355.
11.Zhang, Y. Z.; Liu, T.; Meng, B.; Li, X. H.; Liang, G. Z.; Hu, X. N.; Wang, Q. J., Broadband high photoresponse from pure monolayer graphene photodetector. Nat Commun 2013, 4.
12.Chen, K. I.; Li, B. R.; Chen, Y. T., Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 2011, 6 (2), 131-154.
13.Partoens, B.; Peeters, F. M., From graphene to graphite: Electronic structure around the K point. Phys Rev B 2006, 74 (7).
14.Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. Rev Mod Phys 2009, 81 (1), 109-162.
15.Chen, D.; Feng, H. B.; Li, J. H., Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chem Rev 2012, 112 (11), 6027-6053.
16.Freitag, M., GRAPHENE Trilayers unravelled. Nat Phys 2011, 7 (8), 596-597.
17.Novoselov, K. S.; Castro Neto, A. H., Two-dimensional crystals-based heterostructures: materials with tailored properties. Phys Scripta 2012, T146.
18.Ambrosi, A.; Chee, S. Y.; Khezri, B.; Webster, R. D.; Sofer, Z.; Pumera, M., Metallic Impurities in Graphenes Prepared from Graphite Can Dramatically Influence Their Properties. Angew Chem Int Edit 2012, 51 (2), 500-503.
19.Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z. P.; Colombo, L.; Ferrari, A. C., Production and processing of graphene and 2d crystals. Mater Today 2012, 15 (12), 564-589.
20.Kang, H. C.; Olac-vaw, R.; Karasawa, H.; Miyamoto, Y.; Handa, H.; Suemitsu, T.; Fukidome, H.; Suemitsu, M.; Otsuji, T., Extraction of Drain Current and Effective Mobility in Epitaxial Graphene Channel Field-Effect Transistors on SiC Layer Grown on Silicon Substrates (vol 49, 04DF17, 2010). Jpn J Appl Phys 2010, 49 (7).
21.Kageshima, H.; Hibino, H.; Tanabe, S., The physics of epitaxial graphene on SiC(0001). J Phys-Condens Mat 2012, 24 (31).
22.Somani, P. R.; Somani, S. P.; Umeno, M., Planer nano-graphenes from camphor by CVD. Chem Phys Lett 2006, 430 (1-3), 56-59.
23.Edwards, R. S.; Coleman, K. S., Graphene Film Growth on Polycrystalline Metals. Accounts Chem Res 2013, 46 (1), 23-30.
24.Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324 (5932), 1312-1314.
25.Bhaviripudi, S.; Jia, X. T.; Dresselhaus, M. S.; Kong, J., Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst. Nano Lett 2010, 10 (10), 4128-4133.
26.Seah, C. M.; Chai, S. P.; Mohamed, A. R., Mechanisms of graphene growth by chemical vapour deposition on transition metals. Carbon 2014, 70, 1-21.
27.Novoselov, K. S.; Fal''ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K., A roadmap for graphene. Nature 2012, 490 (7419), 192-200.
28.Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett 2009, 9 (1), 30-35.
29.https://en.wikipedia.org/wiki/Raman_spectroscopy
30.Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S., Raman spectroscopy in graphene. Phys Rep 2009, 473 (5-6), 51-87.
31.Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A., Graphene: The New Two-Dimensional Nanomaterial. Angew Chem Int Edit 2009, 48 (42), 7752-7777.
32.Bjorkman, T.; Kurasch, S.; Lehtinen, O.; Kotakoski, J.; Yazyev, O. V.; Srivastava, A.; Skakalova, V.; Smet, J. H.; Kaiser, U.; Krasheninnikov, A. V., Defects in bilayer silica and graphene: common trends in diverse hexagonal two-dimensional systems. Sci Rep-Uk 2013, 3.
33.Park, J. S.; Reina, A.; Saito, R.; Kong, J.; Dresselhaus, G.; Dresselhaus, M. S., G '' band Raman spectra of single, double and triple layer graphene. Carbon 2009, 47 (5), 1303-1310.
34.Daniel R. Cooper, Benjamin D’Anjou, Nageswara Ghattamaneni, Benjamin Harack, Michael Hilke, Alexandre Horth, Norberto Majlis, Mathieu Massicotte, Leron Vandsburger, Eric Whiteway, and Victor Yu, Experimental Review of Graphene, 2012, 56
35.Blake, P.; Hill, E. W.; Castro Neto, A. H.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K., Making graphene visible. Appl Phys Lett 2007, 91 (6).
36.Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X., Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett 2007, 7 (9), 2758-2763.
37.Tan, Y. W.; Zhang, Y.; Bolotin, K.; Zhao, Y.; Adam, S.; Hwang, E. H.; Das Sarma, S.; Stormer, H. L.; Kim, P., Measurement of scattering rate and minimum conductivity in graphene. Phys Rev Lett 2007, 99 (24).
38.Chen, J. H.; Jang, C.; Ishigami, M.; Xiao, S.; Cullen, W. G.; Williams, E. D.; Fuhrer, M. S., Diffusive charge transport in graphene on SiO2. Solid State Commun 2009, 149 (27-28), 1080-1086.
39.Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S., Detection of individual gas molecules adsorbed on graphene. Nature Materials 2007, 6 (9), 652-655.
40.Ang, P. K.; Chen, W.; Wee, A. T. S.; Loh, K. P., Solution-Gated Epitaxial Graphene as pH Sensor. J Am Chem Soc 2008, 130 (44), 14392-+.
41.Ohno, Y.; Maehashi, K.; Yamashiro, Y.; Matsumoto, K., Electrolyte-Gated Graphene Field-Effect Transistors for Detecting pH Protein Adsorption. Nano Lett 2009, 9 (9), 3318-3322.
42.Cai, B. J.; Wang, S. T.; Huang, L.; Ning, Y.; Zhang, Z. Y.; Zhang, G. J., Ultrasensitive Label-Free Detection of PNA-DNA Hybridization by Reduced Graphene Oxide Field-Effect Transistor Biosensor. Acs Nano 2014, 8 (3), 2632-2638.
43.Li, B. R.; Chen, C. C.; Kumar, U. R.; Chen, Y. T., Advances in nanowire transistors for biological analysis and cellular investigation. Analyst 2014, 139 (7), 1589-1608.
44.Kohler, G.; Milstein, C., Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity. Nature 1975, 256 (5517), 495-497.
45.Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U. S., Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angew Chem Int Edit 2010, 49 (36), 6288-6308.
46.Lin, Y. C.; Lu, C. C.; Yeh, C. H.; Jin, C. H.; Suenaga, K.; Chiu, P. W., Graphene Annealing: How Clean Can It Be? Nano Lett 2012, 12 (1), 414-419.
47.Gao, N.; Gao, T.; Yang, X.; Dai, X. C.; Zhou, W.; Zhang, A. Q.; Lieber, C. M., Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. P Natl Acad Sci USA 2016, 113 (51), 14633-14638.
48.Thermo Fisher Scientific產品說明書
49.http://lqzhu.nimte.ac.cn/research.html
50.https://en.wikipedia.org/wiki/Atomic_force_microscopy
51.https://www.leica-microsystems.com/products/confocal-microscopes/details/product/leica-tcs-sp8/
52.http://www.ntmdt-si.com/afm-raman/ntegra-spectra-2
53.Guangfu Wu, Meyya Meyyappan, King Wai Chiu Lai, Graphene Field-effect Transistors-based Biosensors for Escherichia coli Detection, Proceedings of the 16th International Conference on Nanotechnology Sendai, Japan, August 22-25, 2016
54.Chen, C. C.; Kuo, C. J.; Liao, C. D.; Chang, C. F.; Tseng, C. A.; Liu, C. R.; Chen, Y. T., Growth of Large-Area Graphene Single Crystals in Confined Reaction Space with Diffusion-Driven Chemical Vapor Deposition. Chem Mater 2015, 27 (18), 6249-6258.
55.Li, B. R.; Hsieh, Y. J.; Chen, Y. X.; Chung, Y. T.; Pan, C. Y.; Chen, Y. T., An Ultrasensitive Nanowire-Transistor Biosensor for Detecting Dopamine Release from Living PC12 Cells under Hypoxic Stimulation. J Am Chem Soc 2013, 135 (43), 16034-16037.
56.Banerjee, S.; Hsieh, Y. J.; Liu, C. R.; Yeh, N. H.; Hung, H. H.; Lai, Y. S.; Chou, A. C.; Chen, Y. T.; Pan, C. Y., Differential Releases of Dopamine and Neuropeptide Y from Histamine-Stimulated PC12 Cells Detected by an Aptamer-Modified Nanowire Transistor. Small 2016, 12 (40), 5524-5529.
57.Alvarez-Martos, I.; Campos, R.; Ferapontova, E. E., Surface state of the dopamine RNA aptamer affects specific recognition and binding of dopamine by the aptamer-modified electrodes. Analyst 2015, 140 (12), 4089-4096.
58.Arnold, K.; Herrmann, A.; Pratsch, L.; Gawrisch, K., The Dielectric-Properties of Aqueous-Solutions of Poly(Ethylene Glycol) and Their Influence on Membrane-Structure. Biochim Biophys Acta 1985, 815 (3), 515-518.
59.Herrmann, A.; Pratsch, L.; Arnold, K.; Lassmann, G., Effect of Poly(Ethylene Glycol) on the Polarity of Aqueous-Solutions and on the Structure of Vesicle Membranes. Biochim Biophys Acta 1983, 733 (1), 87-94.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊