跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/14 23:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳其霖
研究生(外文):Chi-Lin Chen
論文名稱:激發態質子轉移與平面化分子之基礎研究與應用
論文名稱(外文):Excited-state proton transfer molecules and planarization molecules in fundamental research and application
指導教授:周必泰
指導教授(外文):Pi-Tai Chou
口試委員:何美霖李祐慈張鎮平趙啟民
口試委員(外文):Mei-Lin HoYu-Tzu LiChen-Pin ChangChi-Min Chao
口試日期:2017-12-15
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:111
中文關鍵詞:激發態質子轉移順反異構化分子平面化
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近來我們策略性合成一系列有關於激發態分子內質子轉移(ESIPT)以及激發態平面化化合物。首先在激發態分子內質子轉移系統中,我們合成一系列Amino (NRH)類型的激發態分子內質子轉移(ESIPT)化合物,我們簡單藉由修飾NRH的官能基的推拉電子效應,來探討其推拉電子效應對於化合物的光譜特性。其結果顯示藉由只修飾NRH的官能基的推拉電子效應,其放光特性以及光譜動力學性質會有相當大的改變。對照OH類型的激發態分子內質子轉移化合物,在不過多改變化合物的結構下,我們只改變NRH的官能基的推拉電子效應,便可以得到完全不同的性質,這些是OH類型的激發態分子內質子轉移化合物所無法達到的。此外我們也更進一步探討2-(2’-tosylaminophenyl)benzothiazole這分子受激發後的光物理現象。當激發2-(2’-tosylaminophenyl)benzothiazole分子時,會先進行分子內激發態質子轉移,接著進行順反異構化產生trans-tautomer。我們利用了nanosecond transient absorption (TA)、two-step laser-induced fluorescence (TSLIF)、pico-femtosecond photoluminescence up-conversion以及理論計算來證明整個光物理反應的機制。另一部分,在平面化分子體系下,我們實驗室發展了一系列有關N,N’-disubstituted-dihydrodibenzo[a,c]phenazines衍生物,這系列化合物在基態時呈現彎曲的構型,而在激發態會先產生馬鞍構型的分子間電子轉移中間態,接著進行平面化到最終平面構型,然而最終平面化構型會因為π電子非定域化(π-delocalization)放出紅光。因此為了進一步瞭解激發態平面化之結構變化,我們利用烷酯鏈將9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine (DPAC) 結構進行限制,有策略的合成一系列化合物DPAC-n (n=1~8),其烷酯鏈不影響其衍生物的共軛性質。我們可以觀察到經由烷酯鏈長度的不同,可以有效的限制分子的激發態平面化行為,烷酯鏈長度與放光波長有著相對應的關係。更進一步的研究平面化系統,我們有策略的將DPAC結構中N上苯環接上不同數量的甲基藉此產生不同程度的立體障礙,形成一系列化合物Mx-My-DPAC (x = 0, 1 or 2, y = 1 or 2),我們觀察到在基態時呈現的馬鞍構型會因立體障礙過大而直接產生平面構型。光譜動力學實驗以及理論計算可以解釋整個光物理反應的機制。
We have strategically designed and synthesized several new classes of excited-state proton transfer and planarization molecules In the cases of excited-state proton intramolecular proton transfer compounds, we have synthesized a series amino (NH)-type intramolecular hydrogen-bonding compounds via replacing one of the N–H hydrogen atoms by various substituents. It makes feasible comprehensive spectroscopy and dynamics studies of excited-state intramolecular proton transfer (ESIPT) as a function of N–H acidity. Another cases is excited-state planarization molecules, we deeply investigate the coupling of electronic processes with conformational motions, we exploit a tailored strategy to harness the excited-state planarization of 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine (DPAC) by halting the structural evolution via macrocyclization process, in which the para sites of 9,14-diphenyl are systematically enclosed by a dialkoxybenzene-alkyl-ester or -ether linkage with different chain lengths, imposing various degrees of constraint to impede the structural deformation. Accordingly, a series of DPAC-n (n = 1~8) derivatives were synthesized, in which n correlates with the alkyl length, such that the strength of the spatial constraint decreases as n increases. Furthermore we have thus strategically designed and synthesized a series of methylation structures based on DPAC as a core, where ortho sites of the 9,14-diphenyl moieties are chemically methylation by methyl group with different methylation , forming a series of new DPAC, Mx-My-DAPC (x = 0, 1 or 2, y = 1 or 2). Our aim was to impose various degrees of steric hindrance to distort the V-shape conformation of ground state structure so that we would be able to investigate the near planar structure in ground state. Comprehensive spectroscopic and dynamic studies, together with a computational approach, rationalized the associated excited-state structure responding to emission origin. For all of these cases, which are suitable for fundamental research and applications.
口試委員會審定書
誌謝 I
中文摘要 II
ABSTRACT III
目錄 IV
LIST OF FIGURES VI
LIST OF TABLES XIV
CHAPTER 1 1
A NEW CLASS OF N–H PROTON TRANSFER MOLECULES: WIDE TAUTOMER EMISSION TUNING FROM 590 NM TO 770 NM VIA A FACILE, SINGLE SITE AMINO DERIVATIZATION IN 10-AMINOBENZO[H]QUINOLINE 1
1.1 INTRODUCTION 1
1.2 EXPERIMENTAL SECTIONS 3
1.3 RESULTS AND DISCUSSION 5
1.4 CONCLUSION 12
1.5 APPENDIX 14
1.6 REFERENCE 19
CHAPTER 2 20
INSIGHT INTO THE AMINO-TYPE EXCITED-STATE INTRAMOLECULAR PROTON TRANSFER CYCLE USING N‑TOSYL DERIVATIVES OF 2‑(2’- AMINOPHENYL)BENZOTHIAZOLE 20
2.1 INTRODUCTION 20
2.2 EXPERIMENTAL SECTIONS 22
2.3 RESULTS AND DISCUSSION 25
2.4 CONCLUSION 40
2.5 APPENDIX 42
2.6 REFERENCE 44
CHAPTER 3 46
SNAPSHOTTING THE EXCITED-STATE PLANARIZATION OF CHEMICALLY-LOCKED N,N-DISUBSTITUTED-DIHYDRODIBENZO[A,C]PHENAZINES 46
3.1 INTRODUCTION 46
3.2 EXPERIMENTAL SECTIONS 50
3.3 RESULT AND DISCUSSION 51
3.4 CONCLUSION 74
3.5 APPENDIX 76
3.6 REFERENCE 86
CHAPTER 4 88
THE BEAUTY OF POSITIONAL METHYLATION; SYSTEMATIC COLOR TUNING BY STERIC HINDRANCE 88
4.1 INTRODUCTION 88
4.2 EXPERIMENTAL SECTIONS 91
4.3 RESULTS AND DISCUSSION 93
4.4 CONCLUSION 106
4.5 APPENDIX 107
4.6 REFERENCE 110
Chapter1
(1) Chou, P.-T. J., Chin. Chem. Soc., 2001, 48, 651.
(2) Kwon , J. E. and Park, S. Y., Adv. Mater., 2011, 23, 3615.
(3) Demchenko, A. P.; Tang, K.-C. and Chou, P.-T., Chem. Soc. Rev., 2013, 42, 1379.
(4) Kim, S.; Seo, J.; Jung, H. K.; Kim, J. J. and Park, S. Y., Adv. Mater., 2005, 17, 2077.
(5) Mutai, T.;Tomoda, H.; Ohkawa, T.;Yabe, Y. and Araki, K.; Angew. Chem. Int. Edit., 2008, 47,
9522.
(6) Shono, H.;Ohkawa, T.; Tomoda, H.; Mutai, T.; and Araki, K.; ACS Appl. Mater. Inter., 2011, 3,
654.
(7) Mutai, T.; Shono, H.; Shigemitsu, Y. and Araki, K. CrystEngComm., 2014, 16, 3890.
(8) Tseng, H.-W., et al., J. Phys. Chem. Lett. 2015, 6, 1477.
(9) Martinez, M. L.;Cooper, W. C. and Chou, P.-T. Chem. Phys. Lett., 1992, 193, 151-154.
(10) Chou, P.-T. and Wei, C.-Y. J. Phys. Chem., 1996, 100, 17059.
(11) Chen, K.-Y.; Hsieh, C.-C.;Cheng, Y.-M.;Lai C.-H. and Chou, P.-T. Chem. Commun., 2006,
4395.
(12) Chou, P.-T.; Chen, Y.-C.;Yu, W.-S.; Chou, Y.-H.;Wei, C.-Y. and Cheng, Y.-M. J. Phys. Chem.
A, 2001, 105, 1731.
(13) Takeuchi, S. and Tahara, T. J. Phys. Chem. A, 2005, 109, 10199.
(14) Smith, T. P.;Zaklika, K. A.;Thakur K. and Barbara, P. F. J. Am. Chem. Soc., 1991, 113,
4035.
(15) Siebrand, W. J. Chem. Phys., 1967, 47, 2411.
Chapter2
(1)Demchenko, A. P.; Tang, K.-C.; Chou, P.-T., Chem. Soc. Rev. 2013, 42, 1379.
(2)Kwon, J. E.; Park, S. Y., Adv. Mater. 2011, 23, 3615.
(3)Chou, P.-T., J. Chin. Chem. Soc. 2001, 48, 651.
(4)Ciuciu, A. I.; Skonieczny, K.; Koszelewski, D.; Gryko, D. T.; Flamigni, L., J. Phys. Chem. C 2013, 117, 791.
(5)Nayak, M. K., J. Photochem. Photobiol. A: Chem. 2012, 241, 26.
(6)Fahrni, C. J.; Henary, M. M.; Van Derveer, D. G., J. Phys. Chem. A 2002, 106, 7655.
(7)Santra, S.; Krishnamoorthy, G.; Dogra, S. K., J. Phys. Chem. A 2000, 104, 476.
(8)Shimada, H.; Nakamura, A.; Yoshihara, T.; Tobita, S., Photochemical & Photobiological Sciences 2005, 4, 367.
(9)Santra, S.; Krishnamoorthy, G.; Dogra, S. K., Chem. Phys. Lett. 1999, 311, 55.
(10)Smith, T. P.; Zaklika, K. A.; Thakur, K.; Barbara, P. F., J. Am. Chem. Soc. 1991, 113, 4035.
(11)Carter, T. P.; Van Benthem, M. H.; Gillispie, G. D., J. Phys. Chem. 1983, 87, 1891.
(12)Allen, N. S.; Harwood, B.; McKellar, J. F., J. Photochem. 1979, 10, 193.
(13)Tseng, H.-W., et al., J. Phys. Chem. Lett. 2015, 6, 1477.
(14)Barbara, P. F.; Brus, L. E.; Rentzepis, P. M., J. Am. Chem. Soc. 1980, 102, 5631.
(15)Elsaesser, T.; Schmetzer, B., Chem. Phys. Lett. 1987, 140, 293.
(16)Elsaesser, T.; Schmetzer, B.; Lipp, M.; Bäuerle, R. J., Chem. Phys. Lett. 1988, 148, 112.
(17)Potter, C. A. S.; Brown, R. G.; Vollmer, F.; Rettig, W., J. Chem. Soc., Faraday Trans. 1994, 90, 59.
(18)Barbatti, M.; Aquino, A. J. A.; Lischka, H.; Schriever, C.; Lochbrunner, S.; Riedle, E., Phys. Chem. Chem. Phys. 2009, 11, 1406.
(19)Itoh, M.; Fujiwara, Y., J. Am. Chem. Soc. 1985, 107, 1561.
(20)Becker, R. S.; Lenoble, C.; Zein, A., J. Phys. Chem. 1987, 91, 3517.
(21)Brewer, W. E.; Martinez, M. L.; Chou, P. T., J. Phys. Chem. 1990, 94, 1915.
(22)Al-Soufi, W.; Grellmann, K. H.; Nickel, B., Chem. Phys. Lett. 1990, 174, 609.
(23)Chou, P.-T.; Pu, S.-C.; Cheng, Y.-M.; Yu, W.-S.; Yu, Y.-C.; Hung, F.-T.; Hu, W.-P., J. Phys. Chem. A 2005, 109, 3777.
(24)Tang, K.-C.; Chang, M.-J.; Lin, T.-Y.; Pan, H.-A.; Fang, T.-C.; Chen, K.-Y.; Hung, W.-Y.; Hsu, Y.-H.; Chou, P.-T., J. Am. Chem. Soc. 2011, 133, 17738.
(25)Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al., Gaussian 09, revision A.02, Gaussian, Inc.: Wallingford, CT, 2009.
(26)T Elsaesser, a.; Kaiser, W., Annu. Rev. Phys. Chem. 1991, 42, 83.
(27)Laermer, F.; Elsaesser, T.; Kaiser, W., Chem. Phys. Lett. 1989, 156, 381.
(28)Brito Cruz, C. H.; Fork, R. L.; Knox, W. H.; Shank, C. V., Chem. Phys. Lett. 1986, 132, 341.
(29)Stephan, J. S.; Rodríguez, C. R.; Grellmann, K. H.; Zachariasse, K. A., Chem. Phys. 1994, 186, 435.
(30)Wiggins, P.; Williams, J. A. G.; Tozer, D. J., J. Chem. Phys. 2009, 131, 091101.
Chapter3
(1) (a) He, G.; Guo, D.; He, C.; Zhang, X.; Zhao, X.; Duan, C., Angew. Chem. Int. Edit 2009, 48, 6132; (b) Zhang, X.; Rehm, S.; Safont-Sempere, M. M.; Würthner, F., Nat Chem 2009, 1, 623; (c) Mo, H.-W.; Tsuchiya, Y.; Geng, Y.; Sagawa, T.; Kikuchi, C.; Nakanotani, H.; Ito, F.; Adachi, C., Adv. Funct. Mater. 2016, 26, 6703.
(2) (a) Rotkiewicz, K.; Grellmann, K. H.; Grabowski, Z. R., Chem. Phys. Lett. 1973, 19, 315; (b) Birks, J. B., Rep Prog Phys 1975, 38, 903; (c) Rettig, W., Angew Chem Int Edit 1986, 25, 971; (d) Mataga, N.; Chosrowjan, H.; Taniguchi, S., J Photoch Photobio C 2005, 6, 37; (e) Cho, D. W.; Fujitsuka, M.; Choi, K. H.; Park, M. J.; Yoon, U. C.; Majima, T., J Phys Chem B 2006, 110, 4576.
(3) Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W., Chem. Rev. 2003, 103, 3899.
(4) (a) Chien, Y.-Y.; Wong, K.-T.; Chou, P.-T.; Cheng, Y.-M., Chem Commun 2002, 2874; (b) Terenziani, F.; Painelli, A.; Katan, C.; Charlot, M.; Blanchard-Desce, M., J. Am. Chem. Soc 2006, 128, 15742; (c) Wong, K.-T.; Ku, S.-Y.; Cheng, Y.-M.; Lin, X.-Y.; Hung, Y.-Y.; Pu, S.-C.; Chou, P.-T.; Lee, G.-H.; Peng, S.-M., J. Org. Chem. 2006, 71, 456; (d) Liu, C.; Tang, K.-C.; Zhang, H.; Pan, H.-A.; Hua, J.-L.; Li, B.; Chou, P.-T., J. Phys. Chem. A 2012, 116, 12339.
(5) (a) Demchenko, A. P.; Tang, K.-C.; Chou, P.-T., Chem. Soc. Rev. 2013, 42, 1379; (b) Padalkar, V. S.; Seki, S., Chem. Soc. Rev. 2016, 45, 169; (c) McDonald, L.; Wang, J.; Alexander, N.; Li, H.; Liu, T.; Pang, Y., J. Phys. Chem. B 2016, 120, 766.
(6) (a) Clegg, R. M., Curr. Opin. Biotechnol. 1995, 6, 103; (b) Jia, X.; Chen, Q.; Yang, Y.; Tang, Y.; Wang, R.; Xu, Y.; Zhu, W.; Qian, X., J. Am. Chem. Soc. 2016, 138, 10778; (c) Sasmal, D. K.; Yadav, R.; Lu, H. P., J. Am. Chem. Soc. 2016, 138, 8789.
(7) (a) Shukla, D.; Wan, P., J. Am. Chem. Soc. 1993, 115, 2990; (b) Vollmer, F.; Rettig, W.; Birckner, E., J. Fluoresc. 1994, 4, 65; (c) Doroshenko, A. O., Theor. Exp. Chem. 2002, 38, 135; (d) Chen, Y.; Zhao, J.; Guo, H.; Xie, L., J. Org. Chem. 2012, 77, 2192; (e) Yuan, C. X.; Saito, S.; Camacho, C.; Irle, S.; Hisaki, I.; Yamaguchi, S., J. Am. Chem. Soc 2013, 135, 8842; (f) Yuan, C. X.; Saito, S.; Camacho, C.; Kowalczyk, T.; Irle, S.; Yamaguchi, S., Chem-Eur J 2014, 20, 2193; (g) Saito, S.; Nobusue, S.; Tsuzaka, E.; Yuan, C.; Mori, C.; Hara, M.; Seki, T.; Camacho, C.; Irle, S.; Yamaguchi, S., Nat. Commun. 2016, 7.
(8) (a) Zhang, Z. Y.; Wu, Y.-S.; Tang, K.-C.; Chen, C.-L.; Ho, J.-W.; Su, J. H.; Tian, H.; Chou, P.-T., J. Am. Chem. Soc 2015, 137, 8509; (b) Chen, J. W.; Wu, Y. S.; Wang, X. D.; Yu, Z. Y.; Tian, H.; Yao, J. N.; Fu, H. B., Phys. Chem. Chem. Phys. 2015, 17, 27658.
(9) Assael, M. J.; Dalaouti, N. K.; Dymond, J. H., Int. J. Thermophys. 2000, 21, 291.
(10) (a) Tang, L. H.; Xia, L. M.; Min, S.; Guo, H. Y., Appl Biochem Biotech 2007, 142, 194; (b) Kurtovic, I.; Marshall, S. N.; Zhao, X.; Simpson, B. K., Fish Physiol Biochem 2010, 36, 1041.
Chapter4
(1) Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z., Chem. Rev. 2015, 115, 11718.
(2) Turro, N. J.; Ramamurthy, V.; Scaiano, J. C., Principles of molecular photochemistry: an introduction. University science books: 2009.
(3) (a) Chung, K.-Y.; Chen, Y.-H.; Chen, Y.-T.; Hsu, Y.-H.; Shen, J.-Y.; Chen, C.-L.; Chen, Y.-A.; Chou, P.-T., J. Am. Chem. Soc. 2017, 139, 6396; (b) Li, W.; Pan, Y.; Xiao, R.; Peng, Q.; Zhang, S.; Ma, D.; Li, F.; Shen, F.; Wang, Y.; Yang, B.; Ma, Y., Adv. Funct. Mater. 2014, 24, 1609; (c) Scuppa, S.; Orian, L.; Donoli, A.; Santi, S.; Meneghetti, M., J. Phys. Chem. A 2011, 115, 8344; (d) Zhang, Q.; Kuwabara, H.; Potscavage, W. J.; Huang, S.; Hatae, Y.; Shibata, T.; Adachi, C., J. Am. Chem. Soc. 2014, 136, 18070.
(4) (a) Baumann, W.; Bischof, H.; Fröhling, J. C.; Brittinger, C.; Rettig, W.; Rotkiewicz, K., J. Photochem. Photobiol., A 1992, 64, 49; (b) Rettig, W.; Zietz, B., Chem. Phys. Lett. 2000, 317, 187.
(5) (a) Wu, Y.-S.; Huang, H.-C.; Shen, J.-Y.; Tseng, H.-W.; Ho, J.-W.; Chen, Y.-H.; Chou, P.-T., J. Phys. Chem. B 2015, 119, 2302; (b) Yu, W.-S.; Cheng, C.-C.; Cheng, Y.-M.; Wu, P.-C.; Song, Y.-H.; Chi, Y.; Chou, P.-T., J. Am. Chem. Soc. 2003, 125, 10800.
(6) (a) Shukla, D.; Wan, P., J. Am. Chem. Soc. 1993, 115, 2990; (b) Yuan, C.; Saito, S.; Camacho, C.; Irle, S.; Hisaki, I.; Yamaguchi, S., J. Am. Chem. Soc. 2013, 135, 8842; (c) Zhang, Z.; Wu, Y.-S.; Tang, K.-C.; Chen, C.-L.; Ho, J.-W.; Su, J.; Tian, H.; Chou, P.-T., J. Am. Chem. Soc. 2015, 137, 8509; (d) Hada, M.; Saito, S.; Tanaka, S. i.; Sato, R.; Yoshimura, M.; Mouri, K.; Matsuo, K.; Yamaguchi, S.; Hara, M.; Hayashi, Y.; Röhricht, F.; Herges, R.; Shigeta, Y.; Onda, K.; Miller, R. J. D., J. Am. Chem. Soc. 2017, 139, 15792.
(7) Chen, W.; Chen, C.-L.; Zhang, Z.; Chen, Y.-A.; Chao, W.-C.; Su, J.; Tian, H.; Chou, P.-T., J. Am. Chem. Soc. 2017, 139, 1636.
(8) Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W., J. Am. Chem. Soc. 2010, 132, 6498.
(9) Tang, W.; Sanville, E.; Henkelman, G., Phys. Compute Mater 2009, 21, 084204.
(10) Lu, T.; Chen, F., J.Comp. Chem. 2012, 33, 580.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top