跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/24 22:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張永郁
研究生(外文):Yung-Yu Chang
論文名稱:異源表現綠竹 BoMSP41 對於阿拉伯芥生長之影響
論文名稱(外文):Effects of ectopic expression of BoMSP41 on the growth of Arabidopsis thaliana
指導教授:王愛玉
口試委員:楊健志洪傳揚
口試日期:2018-01-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:65
中文關鍵詞:異源表現開花株高發芽
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
BoMSP41 (Bambusa oldhamii monocot specific protein-41) 為綠竹中未知功能 基因,其基因表現量於綠竹快速生長時期的節間被大量提升,推測其可能參與綠竹生長。本研究欲探討 BoMSP41 之功能,故建立帶有 FLAG-BoMSP41 或 BoMSP41-FLAG 的轉殖阿拉伯芥 (Arabidopsis thaliana),觀察異源表現 BoMSP41 對於轉殖株生長之影響。觀察發現轉殖株相對於野生型的開花時間較晚、株高較高且於高濃度的葡萄糖下,其發芽率較低。推測 BoMSP41 可能參與阿拉伯芥的開花、細胞增生或延長以及種子發芽。
BoMSP41 (Bambusa oldhamii monocot specific protein-41) is an unknown function gene which is greatly up-regulated in the internodes of rapid growing bamboo, suggesting that BoMSP41 may involve in bamboo growth. To gain insight into the function of BoMSP41, Arabidopsis transgenic plants overexpressing Flag-BoMSP41 or BoMSP41-FLAG is established. The effect of ectopic expression of BoMSP41 on the transgenic plants was investigated. Comparing to the wild type, the flowering time was delayed and the plant height was increased in the transgenic Arabidopsis. Additionally, the germination rate of the transgenic plant was decreased under high concentration of glucose. The results suggest that BoMSP41 may involve in the flowering, cell proliferation and/or elongation, and seed germination.
摘要 1
Abstract 2
縮寫表 3
第一章 緒論 7
第一節 前言 7
1.1 BoMSP41的發現 7
1.2 BoMSP41之生化特性 7
1.3 BoMSP41 之細胞內定位 8
1.4 BoMSP41 於轉殖水稻之功能 8
第二節 研究主題與目的 9
第二章 材料與方法 10
第一節 實驗材料 10
1.1 阿拉伯芥 (Arabidopsis thaliana, Col-0) 10
1.2 菌種 10
1.3 質體 10
1.4 藥品與試劑 10
第二節 實驗方法 11
2.1 轉殖株的建立 11
2.1.1 阿拉伯芥種子消毒與種植 11
2.1.2 阿拉伯芥種植 11
2.1.3 農桿菌轉形 12
2.1.4 花序沾染法 (Clough & Bent, 1998) 12
2.1.5 同型合子篩選 12
2.2 阿拉伯芥的核酸萃取與分析 13
2.2.1 阿拉伯芥染色體DNA之分析 13
2.2.2 阿拉伯芥mRNA之分析 14
2.3 阿拉伯芥的性狀分析 18
2.3.1 轉殖阿拉伯芥之生長指標觀察 18
2.3.2 轉殖阿拉伯芥於植物賀爾蒙處理下的性狀觀察 19
2.3.3 轉殖阿拉伯芥於糖與鹽處理下的性狀觀察 20
2.4 轉殖阿拉伯芥的次細胞定位 21
2.4.1 阿拉伯芥原生質的製備 21
2.4.2 原生質體的轉形 22
2.4.3 於共軛焦顯微鏡之觀察 22
第三章 結果 23
第一節 轉殖株建立與基因插入、mRNA表現分析 23
1.1 阿拉伯芥轉殖株均篩選到獨立品系之同型合子 (Homozygotes) 23
1.2 阿拉伯芥轉殖株確認有 BoMSP41 轉基因插入 23
1.3 MF 和FM 轉殖株具有 BoMSP41 mRNA 基因表現 23
第二節 轉殖株性狀觀察與分析 24
2.1 轉殖阿拉伯芥生長指標分析 24
2.1.1 轉殖阿拉伯芥之開花時間分析 24
2.1.2 轉殖阿拉伯芥植株高度分析 24
2.1.3 轉殖阿拉伯芥果莢型態分析 25
2.1.4 轉殖阿拉伯芥種子型態分析 25
2.2 轉殖阿拉伯芥以植物賀爾蒙處理之性狀觀察 25
2.2.1 GA3 對發芽率及下胚軸延長之影響 25
2.2.2 生長素處理對轉殖株根長之影響 26
2.2.3 細胞分裂素處對下胚軸延長之影響 26
2.3 轉殖阿拉伯芥以糖及鹽處理之性狀觀察 27
2.3.1 糖處理對之影響 27
2.3.2 鹽逆境對發芽率及根延長之影響 27
第三節 次細胞定位 28
第四章 討論與未來展望 29
第一節 阿拉伯芥轉殖株性狀與 BoMSP41 表現之關聯性 29
第二節 BoMSP41 轉殖阿拉伯芥與轉殖水稻之性狀比較 29
第三節 BoMSP41 轉殖阿拉伯芥之細胞內定位 30
第四節 BoMSP41 可能參與之途徑 31
參考文獻 34
圖與表 39
附錄 64
張皓鈞 (2012) 綠竹中 BoMSP41基因之分子選殖與檢定,碩士論文,國立臺灣大學生命科學院生化科技學系。
楊芳潔 (2013) 綠竹 BoMSP41 之細胞內定為與生化性質探討,碩士論文,國立臺灣大學生命科學院生化科技學系。
李佩儒 (2014) 重組綠竹 Monocot-Specific Protein-41 之純化與性質檢定,碩士論文,國立臺灣大學生命科學院生化科技學系。
黃塏荔 (2015) 綠竹 BoMSP41 轉殖水稻之建立,碩士論文,國立臺灣大學生命科學院生化科技學系。
林延翰 (2016) 綠竹 BoMSP41 與其他分子交互作用之探討,碩士論文,國立臺灣大學生命科學院生化科技學系。
徐暐涵 (2017) 異源表現綠竹 BoMSP41 對於水稻生長及穀粒外觀及品質之影響,碩士論文,國立臺灣大學生命科學院生化科技學系。
An F, Zhang X, Zhu Z, et al., 2012. Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. Cell Res 22, 915-27.
Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, Leo´N P, 2000. Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Gene Dev 14, 2085-96.
Auge GA, Blair LK, Karediya A, Donohue K, 2017. The autonomous flowering-time pathway pleiotropically regulates seed germination in Arabidopsis thaliana. Ann Bot.
Ausin I, Alonso-Blanco C, Martinez-Zapater JM, 2005. Environmental regulation of flowering. Int J Dev Biol 49, 689-705.
Boyes DC, Zayed AM, Ascenzi R, et al., 2001. Growth stage–based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13, 1499-510.
Chaiwanon J, Wang W, Zhu JY, Oh E, Wang ZY, 2016. Information integration and communication in plant growth regulation. Cell 164, 1257-68.
Cheng H, Qin L, Lee S, et al., 2004. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131, 1055-64.
Clough SJ, Bent AF, 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735-43.
Cyrek M, Fedak H, Ciesielski A, et al., 2016. Seed dormancy in Arabidopsis is controlled by alternative polyadenylation of DOG1. Plant Physiol 170, 947-55.
Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR, 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139, 5-17.
De Lucas M, Daviere JM, Rodriguez-Falcon M, et al., 2008. A molecular framework for light and gibberellin control of cell elongation. Nature 451, 480-4.
Earley KW, Haag JR, Pontes O, et al., 2006. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45, 616-29.
Feng S, Martinez C, Gusmaroli G, et al., 2008. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451, 475-9.
Fleet CM, Sun TP, 2005. A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8, 77-85.
Itoh H, Matsuoka M, Steber CM, 2003. A role for the ubiquitin-26S-proteasome pathway in gibberellin signaling. Trends Plant Sci 8, 492-7.
Jiang S, Kumar S, Eu YJ, Jami SK, Stasolla C, Hill RD, 2012. The Arabidopsis mutant, fy-1, has an ABA-insensitive germination phenotype. J Exp Bot 63, 2693-703.
Lee HJ, Jung JH, Cortes Llorca L, et al., 2014. FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis. Nat Commun 5, 5473.
Lee S, Cheng H, King KE, et al., 2002. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev 16, 646-58.
Li K, Yu R, Fan LM, Wei N, Chen H, Deng XW, 2016. DELLA-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis. Nat Commun 7, 11868.
Li X, Romero P, Rani M, Dunker AK, Obradovic Z, 1999. Predicting protein disorder for N-, C-, and internal regions. Genome Informatics 10, 30-40.
Liu F, Marquardt S, Liste C, Swiezewski S, Dean C, 2010. Targeted 3′ processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science 327, 94-7.
Liu F, Quesada V, Crevillen P, Baurle I, Swiezewski S, Dean C, 2007. The Arabidopsis RNA-binding protein FCA requires a lysine-specific demethylase 1 homolog to downregulate FLC. Mol Cell 28, 398-407.
Nelson BK, Cai X, Nebenfuhr A, 2007. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51, 1126-36.
Price J, 2003. Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiol 132, 1424-38.
Richards DE, King KE, Ait-Ali T, Harberd NP, 2001. How gibberellin regulates plant growth and development: A molecular genetic analysis of gibberellin signaling. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 67-88.
Song S, Qi T, Wasternack C, Xie D, 2014. Jasmonate signaling and crosstalk with gibberellin and ethylene. Curr Opin Plant Biol 21, 112-9.
Sun J, Qi L, Li Y, Chu J, Li C, 2012. PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating arabidopsis hypocotyl growth. PLoS Genet 8, e1002594.
Tompa P, 2002. Intrinsically unstructured proteins. Trends Biochem Sci 27, 527-33.
Tyler L, Thomas SG, Hu J, et al., 2004. Della proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol 135, 1008-19.
Uversky VN, Gillespie JR, Fink AL, 2000. Why are “natively unfolded” proteins unstructured under physiological conditions? Proteins 41, 415-27.
Wang L, Sauer UH, 2008. OnD-CRF: predicting order and disorder in proteins using conditional random fields. Bioinformatics 24, 1401-2.
Wu FH, Shen SC, Lee LY, Lee SH, Chan MT, Lin CS, 2009. Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods 5, 16.
Xu F, Li T, Xu PB, et al., 2016. DELLA proteins physically interact with CONSTANS to regulate flowering under long days in Arabidopsis. FEBS Lett 590, 541-9.
Yeh SH, Lee BH, Liao SC, et al., 2013. Identification of genes differentially expressed during the growth of Bambusa oldhamii. Plant Physiol Biochem 63, 217-26.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top