跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/20 14:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃斯沛
研究生(外文):Sseu-Pei Hwang
論文名稱:Rta促進Epstein-Barr病毒BRLF1-BZLF1雙基因轉譯的機轉
論文名稱(外文):Promotion of BZLF1 translation by Rta from the BRLF1-BZLF1 bicistronic mRNA of Epstein-Barr virus
指導教授:張麗冠
指導教授(外文):Li-Kwan Chang
口試委員:劉世東張沛鈞羅凱尹廖憶純
口試委員(外文):Shih-Tung LiuPey-Jium ChangKai-Yin LoYi-Chun Liao
口試日期:2018-06-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:82
中文關鍵詞:EB病毒Rta雙基因mRNAIRESITAF
相關次數:
  • 被引用被引用:1
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
EB病毒 (Epstein-Barr virus, EBV) 為人類皰疹病毒感染全球約90%的人口,在感染人類之後會將病毒基因轉型至宿主細胞內潛伏,使宿主細胞不朽化。雖然感染EB病毒一般並不會造成疾病,但卻可能引發特定癌症發生。潛伏的病毒受到特定外界環境刺激後會使得病毒重新被再活化 (reactivate),由潛伏期 (latency) 轉換至溶裂期 (lytic cycle),製造具有感染性的病毒顆粒。病毒在進行溶裂期複製時首先會表現兩個極早期轉錄因子Rta與Zta,這兩個轉錄因子的能夠進一步開啟病毒其他溶裂期基因表現。表現Rta與Zta的病毒基因BRLF1及BZLF1在病毒基因體上彼此相鄰,能夠由BRLF1基因的啟動子 (Rp) 轉錄出雙基因 (bicistronic) 的BRLF1-BZLF1 mRNA (RZ-mRNA)。過去研究中已經證實Zta蛋白質能夠由RZ-mRNA中被有效的轉譯,而且Rta 蛋白質能夠以cis的方式透過雙基因mRNA中的intercistronic region (ICR) 序列在B淋巴細胞P3HR1細胞株中提升下游BZLF1開放譯讀架的轉譯。本研究發現Rta能夠以trans的方式在293T細胞中活化BZLF1開放譯讀架的轉譯。本研究以建構的雙基因表現質體 (pEGFP-ICR-Luc) 證明Rta為ITAF (IRES trans-acting factor) 能夠反式活化 (trans-activate) 下游基因的表現,且Rta的N端序列為活化時的必要片段。本研究亦對ICR序列進行分段,證明ICR序列中的region I及region II片段對Rta活化雙基因轉譯的重要性。此外本研究也以in vitro RNA-protein pulldown方法證實Rta蛋白質與ICR RNA序列結合。綜合以上結果,本研究證實RZ-mRNA的ICR序列具有IRES活性,而Rta能夠做為ITAF反式活化BRLF1-BZLF1雙基因mRNA中BZLF1開放譯讀區的轉譯,並提升Zta 蛋白質的表現。
Epstein-Barr virus (EBV) is a human herpesvirus, which infects more than 90% of the population. After infection, EBV immortalizes its host cells, establishing latent infection. Although the infection is usually asympotmatic, latent EBV infection is often associated with human cancers. The virus can be reactivated by specific environmental changes and enters the lytic cycle to produce virus particles. At the onset of the lytic cycle, the virus expresses two immediate-early transcription factors, Rta and Zta, which activate EBV’s lytic genes. The genes encoding Rta and Zta, BRLF1 and BZLF1, respectively, are situated adjacent on the viral genome with BRLF1 located upstream. The promoter of BRLF1 (Rp) transcribes a bicistronic BRLF1-BZLF1 mRNA (RZ-mRNA). Earlier study has established that Zta is translated efficiently from the bicistronic mRNA; Rta can elevate the translation of BZLF1 orf located downstream in cis via the intercistronic region (ICR) on the RZ-mRNA in P3HR1 B lymphocytes. This study finds that Rta can trans-activate the BZLF1 translation in 293T cells. By generating a bicistronic reporter plasmid (pEGFP-ICR-Luc), this study verified that Rta acts as an IRES trans-acting factor (ITAF) to activate downstream translation in a trans-acting manner and the N-terminal domain of Rta is essential in the scheme. Deletion analysis of ICR further indicates that the two regions within ICR, region I and region II, are important for the translational activation by Rta. Moreover, RNA-protein pulldown assay confirms that Rta binds to ICR in vitro. Altogether, this study demonstrated that the ICR in RZ-mRNA function as an IRES, while Rta serve as an ITAF that trans-activates the translation of BZLF1 from BRLF1-BZLF1 bicistronic mRNA, thereby promoting the expression of Zta.
誌謝 i
摘要 ii
Abstract iii
目錄 iv
前言 1
1. EB病毒與其生活史 1
2. EB病毒的極早期基因:BRLF1與BZLF1 3
3. 真核細胞的轉譯與轉譯起始 5
4. Cap-independent內轉譯起始 7
5. 病毒的BRLF1-BZLF1雙基因mRNA 9
6. BRLF1-BZLF1雙基因mRNA的intercistronic region與Zta啟動子 10
7. Rta在雙基因RZ-mRNA轉譯中所扮演的角色 13
8. Rta參與細胞轉譯調控所扮演的角色 13
9. 研究動機 14
10. 研究假設 14
材料與方法 15
1. 細胞株 15
2. 質體建構 15
3. 細菌 16
4. 細菌轉型 (transformatin) 16
5. 質體DNA的萃取 (extraction) 17
6. 細胞轉染 (transfection) 17
7. 細胞裂解液 (lysate) 製備 17
8. 雙基因表現系統螢光素酶活性 (luciferase activity) 測試 18
9. In vitro RNA轉錄與萃取 18
10. 以生物素標定RNA 19
11. RNA-protein pulldown assay 19
12. 西方墨點法 (Western blotting) 20
結果 22
1. Rta透過ICR序列反式活化雙基因質體的ZLuc表現 22
2. Rta透過ICR region I與region II序列反式活化雙基因質體的Luc表現 23
3. 缺少N-terminal domain的Rta無法活化下游開放譯讀架轉譯 25
4. 核糖體能夠從ICR序列進入雙基因mRNA開啟下游基因轉譯 25
5. Rta在B細胞中亦能透過ICR序列反式活化雙基因轉譯 26
6. Rta在in vitro條件下會與ICR RNA結合 27
7. Rta的N-terminal domain是與ICR RNA在in vitro結合必要片段 28
討論 30
Rta能夠反式活化雙基因轉譯 31
Rta與RNA結合的活性以及功能區 31
雙基因表現中Rta的角色與重要性 33
ICR具有IRES活性並受到ITAF Rta活化 34
ICR序列的活性區 35
雙基因表現系統所表現之螢光素酶活性來自雙基因mRNA表現 37
Rta與ICR RNA結合 38
Rta參與轉譯調控 40
結論 40
圖表 41
表1、本研究所建構之雙基因表現質體 41
表2、本研究所建構用於in vitro transcription的質體 43
表3、其他本研究所使用之質體 44
表4、本研究所使用之引子序列 46
圖1、EB病毒溶裂期極早期轉錄因子Rta與Zta開啟下游早期以及晚期基因表現 47
圖2、Rta各功能區與特性區示意圖 48
圖3、EB病毒的BRLF1與BZLF1基因的轉錄 49
圖4、雙基因中的ICR序列各片段對於雙基因的轉譯重要性不相同 50
圖5、EB病毒各品系ICR序列比較 51
圖6、雙基因中BRLF1基因帶有缺失突變造成下游開放譯讀架轉譯下降 53
圖7、本研究之假設示意圖 54
圖8-1、pCMV-RZLuc雙基因表現質體與其衍生質體 55
圖8-2、BRLF1的缺失與外源Rta對雙基因系統ZLuc表現的影響 57
圖9、ICR的缺失對於pEGFP-ICR-Luc雙基因表現系統Luc表現的影響 58
圖10、Rta 的N端缺失對反式活化雙基因pEGFP-ICR-Luc的影響 59
圖11、ICR序列前的stem loop對雙基因表現質體Luc表現的影響 61
圖12、Rta在B細胞內對雙基因表現質體Luc表現的影響 62
圖13-1、Rta與ICR RNA的結合 63
圖13-2、Rta與ICR以及ICR 1-85 RNA的結合能力 64
圖14、Rta以及N端缺失的Rta對ICR以及ICR 1-85 RNA的結合能力 65
圖15、透過RNAstructure網站預測ICR全長結構 66
附錄 67
附錄1、EB病毒的生活史 67
附錄2、真核細胞的一般轉譯起始機制以及透過IRES所進行的轉譯起始 68
附錄3、18S rRNA與ICR region I的部分互補關係 70
附錄4、18S rRNA部分序列與結構 71
參考文獻 72
Anne-Claude Gingras, Brian Raught, a., Sonenberg, N., 1999. eIF4 Initiation Factors: Effectors of mRNA Recruitment to Ribosomes and Regulators of Translation. Annual Review of Biochemistry 68, 913-963.
Baer, R., Bankier, A.T., Biggin, M.D., Deininger, P.L., Farrell, P.J., Gibson, T.J., Hatfull, G., Hudson, G.S., Satchwell, S.C., Seguin, C., et al., 1984. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207-211.
Ben-Sasson, S.A., Klein, G., 1981. Activation of the Epstein-Barr virus genome by 5-aza-cytidine in latently infected human lymphoid lines. Int J Cancer 28, 131-135.
Bertani, G., 1951. STUDIES ON LYSOGENESIS I. : The Mode of Phage Liberation by Lysogenic Escherichia coli. Journal of Bacteriology 62, 293-300.
Bhende, P.M., Seaman, W.T., Delecluse, H.J., Kenney, S.C., 2004. The EBV lytic switch protein, Z, preferentially binds to and activates the methylated viral genome. Nat Genet 36, 1099-1104.
Bushell, M., Stoneley, M., Kong, Y.W., Hamilton, T.L., Spriggs, K.A., Dobbyn, H.C., Qin, X., Sarnow, P., Willis, A.E., 2006. Polypyrimidine tract binding protein regulates IRES-mediated gene expression during apoptosis. Mol Cell 23, 401-412.
Cassiday, L.A., Maher, L.J., 2002. SURVEY AND SUMMARY: Having it both ways: transcription factors that bind DNA and RNA. Nucleic Acids Res 30, 4118-4126.
Chang, L.K., Chuang, J.Y., Nakao, M., Liu, S.T., 2010. MCAF1 and synergistic activation of the transcription of Epstein-Barr virus lytic genes by Rta and Zta. Nucleic Acids Res 38, 4687-4700.
Chang, L.K., Chung, J.Y., Hong, Y.R., Ichimura, T., Nakao, M., Liu, S.T., 2005. Activation of Sp1-mediated transcription by Rta of Epstein-Barr virus via an interaction with MCAF1. Nucleic Acids Res 33, 6528-6539.
Chang, L.K., Lee, Y.H., Cheng, T.S., Hong, Y.R., Lu, P.J., Wang, J.J., Wang, W.H., Kuo, C.W., Li, S.S., Liu, S.T., 2004. Post-translational modification of Rta of Epstein-Barr virus by SUMO-1. J Biol Chem 279, 38803-38812.
Chang, L.K., Liu, S.T., 2000. Activation of the BRLF1 promoter and lytic cycle of Epstein-Barr virus by histone acetylation. Nucleic Acids Res 28, 3918-3925.
Chang, P.J., Chang, Y.S., Liu, S.T., 1998. Role of Rta in the translation of bicistronic BZLF1 of Epstein-Barr virus. J Virol 72, 5128-5136.
Chang, P.J., Liu, S.T., 2001. Function of the intercistronic region of BRLF1-BZLF1 bicistronic mRNA in translating the zta protein of Epstein-Barr virus. J Virol 75, 1142-1151.
Chen, L.W., Chang, P.J., Delecluse, H.J., Miller, G., 2005. Marked variation in response of consensus binding elements for the Rta protein of Epstein-Barr virus. J Virol 79, 9635-9650.
Cobbold, L.C., Spriggs, K.A., Haines, S.J., Dobbyn, H.C., Hayes, C., de Moor, C.H., Lilley, K.S., Bushell, M., Willis, A.E., 2008. Identification of internal ribosome entry segment (IRES)-trans-acting factors for the Myc family of IRESs. Mol Cell Biol 28, 40-49.
Cobbold, L.C., Wilson, L.A., Sawicka, K., King, H.A., Kondrashov, A.V., Spriggs, K.A., Bushell, M., Willis, A.E., 2010. Upregulated c-myc expression in multiple myeloma by internal ribosome entry results from increased interactions with and expression of PTB-1 and YB-1. Oncogene 29, 2884-2891.
Cohen, S.N., Chang, A.C., Hsu, L., 1972. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A 69, 2110-2114.
Cornelis, S., Tinton, S.A., Schepens, B., Bruynooghe, Y., Beyaert, R., 2005. UNR translation can be driven by an IRES element that is negatively regulated by polypyrimidine tract binding protein. Nucleic Acids Research 33, 3095-3108.
Countryman, J., Gradoville, L., Bhaduri-McIntosh, S., Ye, J., Heston, L., Himmelfarb, S., Shedd, D., Miller, G., 2009. Stimulus duration and response time independently influence the kinetics of lytic cycle reactivation of Epstein-Barr virus. J Virol 83, 10694-10709.
Dolyniuk, M., Pritchett, R., Kieff, E., 1976a. Proteins of Epstein-Barr virus. I. Analysis of the polypeptides of purified enveloped Epstein-Barr virus. J Virol 17, 935-949.
Dolyniuk, M., Wolff, E., Kieff, E., 1976b. Proteins of Epstein-Barr Virus. II. Electrophoretic analysis of the polypeptides of the nucleocapsid and the glucosamine- and polysaccharide-containing components of enveloped virus. J Virol 18, 289-297.
Dormoy-Raclet, V., Markovits, J., Jacquemin-Sablon, A., Jacquemin-Sablon, H., 2005. Regulation of Unr expression by 5''- and 3''-untranslated regions of its mRNA through modulation of stability and IRES mediated translation. RNA Biol 2, e27-35.
Epstein, M.A., Achong, B.G., Barr, Y.M., 1964. Virus Particles in Cultured Lymphoblasts from Burkitt''s Lymphoma. Lancet 1, 702-703.
Farrell, P.J., 2001. Epstein-Barr Virus, in: Wilson, J.B., May, G.H.W. (Eds.), Epstein-Barr Virus Protocols. Humana Press, Totowa, NJ, pp. 3-12.
Flemington, E., Speck, S.H., 1990. Autoregulation of Epstein-Barr virus putative lytic switch gene BZLF1. J Virol 64, 1227-1232.
Furnari, F.B., Zacny, V., Quinlivan, E.B., Kenney, S., Pagano, J.S., 1994. RAZ, an Epstein-Barr virus transdominant repressor that modulates the viral reactivation mechanism. J Virol 68, 1827-1836.
Futterer, J., Kiss-Laszlo, Z., Hohn, T., 1993. Nonlinear ribosome migration on cauliflower mosaic virus 35S RNA. Cell 73, 789-802.
Giot, J.F., Mikaelian, I., Buisson, M., Manet, E., Joab, I., Nicolas, J.C., Sergeant, A., 1991. Transcriptional interference between the EBV transcription factors EB1 and R: both DNA-binding and activation domains of EB1 are required. Nucleic Acids Res 19, 1251-1258.
Graham, F.L., Smiley, J., Russell, W.C., Nairn, R., 1977. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36, 59-74.
Gussander, E., Adams, A., 1984. Electron microscopic evidence for replication of circular Epstein-Barr virus genomes in latently infected Raji cells. J Virol 52, 549-556.
Hammerschmidt, W., Sugden, B., 2013. Replication of Epstein-Barr viral DNA. Cold Spring Harb Perspect Biol 5, a013029.
Harding, H.P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M., Ron, D., 2000. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6, 1099-1108.
Heilmann, A.M., Calderwood, M.A., Portal, D., Lu, Y., Johannsen, E., 2012. Genome-wide analysis of Epstein-Barr virus Rta DNA binding. J Virol 86, 5151-5164.
Hellen, C.U., Sarnow, P., 2001. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15, 1593-1612.
Henderson, E.E., Long, W.K., 1981. Host cell reactivation of uv- and X-ray-damaged herpes simplex virus by Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines. Virology 115, 237-248.
Henle, W., Diehl, V., Kohn, G., Zur Hausen, H., Henle, G., 1967. Herpes-type virus and chromosome marker in normal leukocytes after growth with irradiated Burkitt cells. Science 157, 1064-1065.
Henson, B.W., Perkins, E.M., Cothran, J.E., Desai, P., 2009. Self-assembly of Epstein-Barr virus capsids. J Virol 83, 3877-3890.
Herzog, E., Guilley, H., Fritsch, C., 1995. Translation of the second gene of peanut clump virus RNA 2 occurs by leaky scanning in vitro. Virology 208, 215-225.
Hsu, T.Y., Chang, Y., Wang, P.W., Liu, M.Y., Chen, M.R., Chen, J.Y., Tsai, C.H., 2005. Reactivation of Epstein-Barr virus can be triggered by an Rta protein mutated at the nuclear localization signal. J Gen Virol 86, 317-322.
Huang, P.N., Lin, J.Y., Locker, N., Kung, Y.A., Hung, C.T., Lin, J.Y., Huang, H.I., Li, M.L., Shih, S.R., 2011. Far upstream element binding protein 1 binds the internal ribosomal entry site of enterovirus 71 and enhances viral translation and viral growth. Nucleic Acids Res 39, 9633-9648.
Jang, S.K., Krausslich, H.G., Nicklin, M.J., Duke, G.M., Palmenberg, A.C., Wimmer, E., 1988. A segment of the 5'' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62, 2636-2643.
Jensen, R.A., Haas, F.L., 1963. ELECTROKINETICS AND CELL PHYSIOLOGY II. : Relationship of Surface Charge to Onset of Bacterial Competence for Genetic Transformation. Journal of Bacteriology 86, 79-86.
Johannes, G., Carter, M.S., Eisen, M.B., Brown, P.O., Sarnow, P., 1999. Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proc Natl Acad Sci U S A 96, 13118-13123.
Kang, M.S., Kieff, E., 2015. Epstein-Barr virus latent genes. Exp Mol Med 47, e131.
King, H.A., Cobbold, L.C., Willis, A.E., 2010. The role of IRES trans-acting factors in regulating translation initiation. Biochem Soc Trans 38, 1581-1586.
Klein, G., Lindahl, T., Jondal, M., Leibold, W., Menezes, J., Nilsson, K., Sundstrom, C., 1974. Continuous lymphoid cell lines with characteristics of B cells (bone-marrow-derived), lacking the Epstein-Barr virus genome and derived from three human lymphomas. Proc Natl Acad Sci U S A 71, 3283-3286.
Komar, A.A., Hatzoglou, M., 2015. Exploring Internal Ribosome Entry Sites as Therapeutic Targets. Frontiers in Oncology 5.
Kozak, M., 1999. Initiation of translation in prokaryotes and eukaryotes. Gene 234, 187-208.
Kozak, M., 2001. Constraints on reinitiation of translation in mammals. Nucleic Acids Res 29, 5226-5232.
Kuyumcu-Martinez, N.M., Joachims, M., Lloyd, R.E., 2002. Efficient cleavage of ribosome-associated poly(A)-binding protein by enterovirus 3C protease. J Virol 76, 2062-2074.
Latorre, P., Kolakofsky, D., Curran, J., 1998. Sendai virus Y proteins are initiated by a ribosomal shunt. Mol Cell Biol 18, 5021-5031.
Lin, T.Y., Chu, Y.Y., Yang, Y.C., Hsu, S.W., Liu, S.T., Chang, L.K., 2014. MCAF1 and Rta-activated BZLF1 transcription in Epstein-Barr virus. PLoS One 9, e90698.
Liu, S., Borras, A.M., Liu, P., Suske, G., Speck, S.H., 1997. Binding of the ubiquitous cellular transcription factors Sp1 and Sp3 to the ZI domains in the Epstein-Barr virus lytic switch BZLF1 gene promoter. Virology 228, 11-18.
Luka, J., Kallin, B., Klein, G., 1979. Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology 94, 228-231.
Malys, N., McCarthy, J.E.G., 2011. Translation initiation: variations in the mechanism can be anticipated. Cellular and Molecular Life Sciences 68, 991-1003.
Manet, E., Gruffat, H., Trescol-Biemont, M.C., Moreno, N., Chambard, P., Giot, J.F., Sergeant, A., 1989. Epstein-Barr virus bicistronic mRNAs generated by facultative splicing code for two transcriptional trans-activators. EMBO J 8, 1819-1826.
Manet, E., Rigolet, A., Gruffat, H., Giot, J.F., Sergeant, A., 1991. Domains of the Epstein-Barr virus (EBV) transcription factor R required for dimerization, DNA binding and activation. Nucleic Acids Res 19, 2661-2667.
Meijer, H.A., Thomas, A.A., 2002. Control of eukaryotic protein synthesis by upstream open reading frames in the 5''-untranslated region of an mRNA. Biochem J 367, 1-11.
Merrick, W.C., 2004. Cap-dependent and cap-independent translation in eukaryotic systems. Gene 332, 1-11.
Mitchell, S.A., Spriggs, K.A., Bushell, M., Evans, J.R., Stoneley, M., Le Quesne, J.P., Spriggs, R.V., Willis, A.E., 2005. Identification of a motif that mediates polypyrimidine tract-binding protein-dependent internal ribosome entry. Genes Dev 19, 1556-1571.
Mitchell, S.A., Spriggs, K.A., Coldwell, M.J., Jackson, R.J., Willis, A.E., 2003. The Apaf-1 internal ribosome entry segment attains the correct structural conformation for function via interactions with PTB and unr. Mol Cell 11, 757-771.
Mueller, P.P., Hinnebusch, A.G., 1986. Multiple upstream AUG codons mediate translational control of GCN4. Cell 45, 201-207.
Odumade, O.A., Hogquist, K.A., Balfour, H.H., Jr., 2011. Progress and problems in understanding and managing primary Epstein-Barr virus infections. Clin Microbiol Rev 24, 193-209.
Pelletier, J., Sonenberg, N., 1988. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320-325.
Pittman, R.H., Andrews, M.T., Setzer, D.R., 1999. A feedback loop coupling 5 S rRNA synthesis to accumulation of a ribosomal protein. J Biol Chem 274, 33198-33201.
Quinlivan, E.B., Holley-Guthrie, E.A., Norris, M., Gutsch, D., Bachenheimer, S., Kenney, S.C., 1993. Direct BRLF1 binding is required for cooperative BZLF1/BRLF1 activation of the Epstein – Barr virus early promoter, BMRF1. Nucleic Acids Res 21, 1999-2007.
Racine, T., Barry, C., Roy, K., Dawe, S.J., Shmulevitz, M., Duncan, R., 2007. Leaky scanning and scanning-independent ribosome migration on the tricistronic S1 mRNA of avian reovirus. J Biol Chem 282, 25613-25622.
Ragoczy, T., Heston, L., Miller, G., 1998. The Epstein-Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. J Virol 72, 7978-7984.
Ragoczy, T., Miller, G., 1999. Role of the Epstein-Barr Virus Rta Protein in Activation of Distinct Classes of Viral Lytic Cycle Genes. J Virol 73, 9858-9866.
Robinson, A.R., Kwek, S.S., Hagemeier, S.R., Wille, C.K., Kenney, S.C., 2011. Cellular transcription factor Oct-1 interacts with the Epstein-Barr virus BRLF1 protein to promote disruption of viral latency. J Virol 85, 8940-8953.
Rollins, M.B., Del Rio, S., Galey, A.L., Setzer, D.R., Andrews, M.T., 1993. Role of TFIIIA zinc fingers in vivo: analysis of single-finger function in developing Xenopus embryos. Mol Cell Biol 13, 4776-4783.
Ryabova, L.A., Pooggin, M.M., Hohn, T., 2002a. Viral strategies of translation initiation: ribosomal shunt and reinitiation. Prog Nucleic Acid Res Mol Biol 72, 1-39.
Ryabova, L.A., Pooggin, M.M., Hohn, T., 2002b. Viral strategies of translation initiation: ribosomal shunt and reinitiation.
Sawicka, K., Bushell, M., Spriggs, K.A., Willis, A.E., 2008. Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem Soc Trans 36, 641-647.
Shannon-Lowe, C., Rowe, M., 2014. Epstein Barr virus entry; kissing and conjugation. Curr Opin Virol 4, 78-84.
Sonenberg, N., Hinnebusch, A.G., 2009. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731-745.
Speck, S.H., Chatila, T., Flemington, E., 1997. Reactivation of Epstein-Barr virus: regulation and function of the BZLF1 gene. Trends in Microbiology 5, 399-405.
Sugimoto, A., Sato, Y., Kanda, T., Murata, T., Narita, Y., Kawashima, D., Kimura, H., Tsurumi, T., 2013. Different distributions of Epstein-Barr virus early and late gene transcripts within viral replication compartments. J Virol 87, 6693-6699.
Takada, K., 1984. Cross-linking of cell surface immunoglobulins induces Epstein-Barr virus in Burkitt lymphoma lines. Int J Cancer 33, 27-32.
Terenin, I.M., Smirnova, V.V., Andreev, D.E., Dmitriev, S.E., Shatsky, I.N., 2017. A researcher''s guide to the galaxy of IRESs. Cell Mol Life Sci 74, 1431-1455.
Tsurumi, T., 2001. EBV Replication Enzymes, in: Takada, K. (Ed.), Epstein-Barr Virus and Human Cancer. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 65-87.
Tsurumi, T., Fujita, M., Kudoh, A., 2005. Latent and lytic Epstein-Barr virus replication strategies. Rev Med Virol 15, 3-15.
Weiss, M.A., Narayana, N., 1998. RNA recognition by arginine-rich peptide motifs. Biopolymers 48, 167-180.
Xue, S.A., Griffin, B.E., 2007. Complexities associated with expression of Epstein-Barr virus (EBV) lytic origins of DNA replication. Nucleic Acids Res 35, 3391-3406.
Yamamoto, H., Unbehaun, A., Spahn, C.M.T., 2017. Ribosomal Chamber Music: Toward an Understanding of IRES Mechanisms. Trends Biochem Sci 42, 655-668.
Yoshida, M., Kijima, M., Akita, M., Beppu, T., 1990. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265, 17174-17179.
Zalani, S., Holley-Guthrie, E., Kenney, S., 1996. Epstein-Barr viral latency is disrupted by the immediate-early BRLF1 protein through a cell-specific mechanism. Proc Natl Acad Sci U S A 93, 9194-9199.
Zur Hausen, H., 2009. The search for infectious causes of human cancers: where and why. Virology 392, 1-10.
zur Hausen, H., O''Neill, F.J., Freese, U.K., Hecker, E., 1978. Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature 272, 373-375.
殷群, 2016. Involvement of Rta in the Translational Initiation of BRLF1-BZLF1 Bicistronic mRNA of Epstein-Barr Virus. 國立臺灣大學碩士論文.
蔡曉涵, 2016. Role of Rta of Epstein-Barr virus in mitochondria. 國立臺灣大學碩士論文.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top