跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 20:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳益州
研究生(外文):I-Chou Wu
論文名稱:以基因演算法設計之奈米光柵應用於高功率半導體雷射陣列耦光之研究
論文名稱(外文):Efficient LDA Coupling to Fiber using Genetic Algorithm Designed Nano-grating
指導教授:黃升龍
指導教授(外文):Sheng-Lung Huang
口試委員:管傑雄李穎玟黃定洧
口試委員(外文):Chieh-Hsiung KuanYin-Wen LeeDing-Wei Huang
口試日期:2017-11-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:108
中文關鍵詞:高功率雷射半導體雷射陣列光柵式側向耦光系統基因演算法電子束微影製程
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
於高功率雷射領域中,以半導體雷射做為光源所發展的光纖雷射漸漸地主導了此領域的走向。半導體雷射於電光轉換效率、高功率輸出及光束品質等方面均具極佳的優勢,因此於不同雷射幫浦架構中,其被作為可靠的高功率雷射光源。於本實驗室中,採用半導體雷射陣列做為光源之光柵式側向耦光系統於2011年被提出,而此側向耦光系統具兩種會導致耦光效率損耗的機制,其分別為二次繞射損耗及邊緣損耗。於稍後研究成果中,將光源為976-nm輸出波長之半導體雷射陣列耦入400-μm內纖衣尺寸光纖,且將所採用的週期性光柵之週期由680 nm替換為675 nm以有效地改善二次繞射損耗且達到67.63%實驗耦光效率。
於本論文中,我們將著手改善邊緣損耗所造成之影響。我們同樣採用675-nm週期光柵及400-μm內纖衣尺寸光纖,接著利用基因演算法以設計出具顯著±1st階不對等繞射光效率的非對稱性光柵結構以取代週期性光柵之兩端結構而形成非週期性光柵。透過電子束微影製程的參數測試及改良後,我們成功地製作出具40-nm寬極細結構之非對稱性光柵結構,接著採用二次對準技術將非對稱性光柵結構成功地與週期性光柵做整合以製作出非週期性光柵。透過非週期性光柵與週期性光柵之實驗耦光效率分析及比較,由基因演算法所設計之非對稱性光柵結構可有效地改善邊緣損耗且將實驗耦光效率再往上提升至75%,其為目前光柵式側向耦光技術所能達到之最高耦光效率。
In high power laser field, the fiber laser with adopting diode-pumped laser as light source gradually dominates this field. The adoption of diode-pumped laser as a reliable high-power laser light source in various configuration of pumped laser is due to the high electrical-optical conversion efficiency, high output power, and excellent beam quality. In 2011, we demonstrated the grating based side-coupling scheme with using laser diode array (LDA) as light source and there were two loss mechanisms, secondary diffraction loss and edge loss, decreasing the coupling efficiency. In the later research, the secondary diffraction loss could be effectively improved and the 67.63% coupling efficiency was achieved by coupling 976-nm LDA into 400-μm double cladding fiber and substituting periodic grating with 675-nm period for that with 680-nm period.
In this study, we start to improve the edge loss. At first, we choose the same grating based side-coupling scheme and we adopt grating with 675-nm period and 400-μm double cladding fiber to prevent the side-coupling scheme from being influenced by secondary diffraction loss. Next, we adopt Genetic Algorithm to design the asymmetric grating structure with significant ±1st order asymmetric diffraction efficiency used to replace the structures at the two edges of periodic grating to form aperiodic grating. Through a series of experimental parameters test and improvement of E-beam lithography process, we successfully fabricate asymmetric grating structure with 40-nm thin structure integrated with periodic grating by secondary alignment to form aperiodic grating. After comparing the experimental coupling efficiency of aperiodic grating and periodic grating, the adoption of asymmetric grating structure designed by Genetic Algorithm could effectively improve the edge loss and make the coupling efficiency of aperiodic gating be up to 75% which is the highest coupling efficiency for side-coupling technology.
致謝..........................................................i
中文摘要....................................................iii
Abstract.....................................................iv
圖目錄........................................................3
表目錄........................................................7
第一章 緒論與研究動機.........................................8
第二章 光柵式側向耦光系統技術................................10
2.1 光柵式側向耦光與端面耦光技術之比較.......................10
2.2 光柵式側向耦光系統之架構.................................14
2.3 半導體雷射陣列之特性.....................................16
2.4 側向耦光之瓶頸...........................................20
2.4.1 二次繞射損耗之影響.....................................20
2.4.2 邊緣損耗之影響.........................................23
第三章 側向耦光瓶頸之改善....................................25
3.1 二次繞射損耗之改善.......................................25
3.2 非對稱性光柵結構設計改善邊緣損耗.........................26
3.3 採用不同尺寸內纖衣光纖對損耗之影響與改善.................34
第四章 電子束微影製程製作之耦光光柵..........................46
4.1 976-nm LDA之週期性光柵製作...............................46
4.2 976-nm LDA之非週期性光柵製作.............................50
4.2.1 非對稱性光柵製作.......................................50
4.2.2 對稱性光柵製作.........................................64
第五章 側向耦光系統實驗......................................72
5.1 一公分陣列之耦光理論比較.................................72
5.2 一公分陣列之耦光實驗比較.................................77
第六章 結論與未來展望........................................88
6.1 結論.....................................................88
6.2 未來展望.................................................88
參考文獻.....................................................94
附錄A:第零階繞射光正向反射回半導體雷射陣列光源而對光源造成之影響...........................................................96
附錄B:於Matlab中撰寫程式碼以利用基因演算法設計非對稱性光柵結構 .............................................................98
[1]楊松蒲, "光柵式側向耦光技術應用於高功率半導體雷射陣列之研究," 國立臺灣大學, 碩士論文, 2015.
[2]https://en.wikipedia.org/wiki/Double-clad_fiber (June 13, 2011)
[3]K. Price, S. Karlsen, and P. Leisher, R. Martinsen, "High-brightness fiber-coupled pump laser development," Proc. of SPIE, vol. 7583, pp. 758308, 2010.
[4]D. Kouznetsov and J. V. Moloney, "Highly efficient, high-gain, short-length, and power-scalable incoherent diode slab-pumped fiber amplifier/laser," IEEE Journal of Quantum Electronics, vol. 39, pp. 1452-1461, 2003.
[5]R. Herda, A. Liem, B. Schnabel, A. Drauschke, H.-J. Fuchs, E.-B. Kley, H. Zellmer, and A. Tuennermann, "Efficient side-pumping of fibre lasers using binary gold diffraction gratings," Electronics Letters, vol. 39, pp. 276-277, 2003.
[6]https://refractiveindex.info/?shelf=main&book=SiO2&page=Malitson (1965)
[7]http://nanolithography.gatech.edu/training/Determining_dose_r3.pdf (August, 2010)
[8]http://lnf-wiki.eecs.umich.edu/wiki/Physical_vapor_deposition#Step_coverage (February 27, 2015)
[9]http://www.laogu.com/cms/xw_24806.htm (October 10, 2005)
[10]P. A. Dennig and D. A. Stevenson, "Influence of substrate topography on the nucleation of diamond thin films," Applied Physics Letters, vol. 59, 1991.
[11]A. J. Hong, C. C. Liu, Y. Wang, J. Kim, F. Xiu, S. Ji, J. Zou, P. F. Nealey, and K. L. Wang, "Metal Nanodot Memory by Self-Assembled Block Copolymer Lift-Off," Nano Letters, vol. 10(1), pp. 224-229, 2009.
[12]http://www.mrsec.harvard.edu/education/ap298r2004/Erli
%20chenFabrication%20II%20-%20Deposition-1.pdf (April 12, 2004)
[13]http://www.ece.umd.edu/class/enee416/ENEE416%20Physical%20
Deposition.pdf (October 13, 2011)
[14] 鍾政桓, "電子束微影之低溫短顯影研究," 國立臺灣大學, 碩士論文, 2016.
[15]M. R. A. Moghaddam, S. W. Harun, and H. Ahmad, "Comparison between Analytical Solution and Experimental Setup of a Short Long Ytterbium Doped Fiber Laser," Optics and Photonics Journal, vol. 2, 2012.
[16]V. X. Liu, "Technology Trend and Challenges in High Power Semiconductor Laser Packaging," Electronic Packaging Technology, August 2007.
[17]http://www.nlight.net/nlight-files/file/datasheets/CS/nLIGHT_CS-NonVisible_081001.pdf (2017)
[18]http://www.nlight.net/nlight-files/file/DatasheetsV2/element/9xx/(e06_0650976105)%20e06-06-065-0976-3-105-0_22-SI-FPT-2_0-HT.pdf (2017)
[19] P. Schreiber, B. Hoefer, P. Dannberg, and U. D. Zeitner, "High-brightness fiber- coupling schemes for diode laser bars," Optics & Photonics 2005, pp. 587602-587602-10, 2005.
[20] K. Price, S. Karlsen, P. Leisher, and R. Martinsen, "High-brightness fiber-coupled pump laser development," Proc. SPIE 7583, High-Power Diode Laser Technology and Applications VIII, 758308, 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top