跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 12:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃域思
研究生(外文):Yuh-Szu Huang
論文名稱:腦磁圖儀系統之改進用以進行動物體聽覺刺激之神經活化特性研究
論文名稱(外文):Improvement of Using magnetoencephalography(MEG) as a Sensor Configuration for research of active property in Rats by Auditory Stimulus
指導教授:王立民王立民引用關係
指導教授(外文):Li-Ming Wang
口試委員:謝振傑廖書賢
口試委員(外文):Jen-Je ChiehShu-Hsien Liao
口試日期:2018-01-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:53
中文關鍵詞:超導量子穿隧元件單頻音腦磁圖儀等效電流偶極
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是利用128通道全腦式腦磁圖儀系統進行動物體的聽覺反應。腦磁圖儀是利用超導所製作而成的超導量子干涉元件築構而成,利用其對於磁場量測的高靈敏性,得以量測來自生物體內因為刺激產生神經傳遞的電磁訊號,故對於無論是人文科學以及生物科學相關的研究,都有其助益存在。
由於全腦式腦磁圖儀系統設計上是用於人體腦部訊號的量測,造影後反演算得到的解析度較為受限,訊號源在動物體尚無法精確地表示。因此從前置以及後端運算的部分做改進方可用於較小訊號的量測及演算。
本研究在現有的圖儀系統硬體應用下,進行前置定位校準的修正,試圖較為精確的量測動物體的訊號,將測得的訊號造影成像,利用樣品訊號演算法推得訊號來源的座標。將定位校準改良以及反演算法改善,以用於空間解析度要求較高的動物體。
從觀察聽覺刺激誘發反應的P9波形出現時間以及神經活化的位置,可以知道聽覺刺激從左右耳接收對於活化神經的位置是對稱腦的分佈,但對於誘發反應出現的時間並沒有明顯的影響。
同時利用從等磁場軌跡曲線圖(iso-field contour map)反演算推得ECD(equivalent current dipole)的強度以及位置,比較使用最小範數估計法(minimum-norm estimation, MNE)以及引入參數後並做迭代的最小範數源迭代法(source iteration of minimum norm, SIMN),可以得到利用SIMN所得的結果較為集中、準確。
最後以線圈陣列測量電流電路之感應磁場模擬未來之磁影像偵測系統,作為發展SQUID陣列磁影像感測系統之前置基礎。
This study is the use of 128-channel whole brain magnetoencephalography (MEG) for animal auditory response. MEG is built up with superconducting quantum interference devices(SQUIDs) which are made up by superconductors. By using its high sensibility of magnetic measurement, we could use measure the electromagnetic signals generated by biological stimulations of neurotransmission. Therefore, there are merits for both the humanities and bioscience-related researches.
Because the whole brain magnetometer system is designed to measure human brain signals, the resolution obtained after contrast imaging is limited, and the signal source can’t be accurately expressed in the animal body. So the improvement from the front and back-end computing parts is performed for smaller signal measurement and calculation.
In this study, the calibration of the pre-positioning was performed under the existing hardware application of the graph instrument system. In this case, we can measure the signal of the animal body more accurately, image the measured signal and use it to reverse the algorithm coordinates of signal sources. The improvement of the positioning calibration and inversion algorithm is applied for animals which require high spatial resolution.
According to the time of appearance of auditory stimulus-induced P9 waveforms and the location of nerve activation, we can see that the auditory stimulations from the left and right ears reveal symmetrical brain distributions for the activated nerves, and has no obviously different effects on the timing of evoked responses.
Moreover, the intensity and position of the equivalent current dipole(ECD) are deduced from the inversions of the iso-field contour mapping. The minimum-norm estimation (MNE) and the minimum range after introducing the parameters with source iteration of minimum norm (SIMN) are compared. It is found that SIMN can get more concentrated and accurate data than that by using MNE.
On the other hand, the magnetic field induced by a current circuit is measured by the coil arrays to simulate a future magnetic image detection system. This is a preconditioning for the development of a SQUID-array magnetic image sensing system.
口試委員會審定書…………………………………………………………… i
誌謝…………………………………………………………………………… ii
中文摘要……………………………………………………………………… iii
英文摘要……………………………………………………………………… iv
目錄…………………………………………………………………………… v
圖目錄………………………………………………………………………… vii
表目錄………………………………………………………………………… x
第一章 緒論…………………………………………………………………..1
1.1腦磁圖研究……………………………………………………………1
1.2鼠腦聽覺研究…………………………………………………………2
1.3研究動機………………………………………………………………4
第二章 理論背景與原理簡介………………………………………………..5
2.1超導體概述及應用……………………………………………………5
2.2超導量子干涉元件……………………………………………………9
2.3電流偶極及其產生的磁場……………………………………………11
2.4反演算法介紹…………………………………………………………12
2.5老鼠與人類的大腦比較及聽覺皮質運作……………………………14
2.6大腦的聽覺誘發磁場…………………………………………………15
第三章 實驗步驟與方法……………………………………………………..16
3.1腦磁圖儀系統…………………………………………………………16
3.2實驗生物體以及麻醉…………………………………………………17
3.3聲音刺激………………………………………………………………20
3.4頭部座標與目標通道的選擇…………………………………………21
3.5聲音刺激誘發腦訊號量測……………………………………………23
3.6數據分析………………………………………………………………24
第四章 實驗結果與討論……………………………………………………..26
4.1 MEG系統量測得到的訊號…………………………………………..26
4.2訊號處理………………………………………………………………29
4.3聽覺皮質對於單調音刺激活化之特性探討…………………………33
4.4不同演算法下回推得到的ECD做比較……………………………..37
4.5線圈陣列之磁影像結果………………..……………………………..40
第五章 結論…………………………………………………………………..42
參考文獻………………………………………………………………………..43
附錄……………………………………………………………………………..45
1.Lee, Y.H., et al., A whole-head magnetoencephalography system with compact axial gradiometer structure. Superconductor Science & Technology, 2009. 22(4): p. 6.
2.Hamalainen, M., et al., MAGNETOENCEPHALOGRAPHY - THEORY, INSTRUMENTATION, AND APPLICATIONS TO NONINVASIVE STUDIES OF THE WORKING HUMAN BRAIN. Reviews of Modern Physics, 1993. 65(2): p. 413-497.
3.Sally, S.L. and J.B. Kelly, ORGANIZATION OF AUDITORY-CORTEX IN THE ALBINO-RAT - SOUND FREQUENCY. Journal of Neurophysiology, 1988. 59(5): p. 1627-1638.
4.Simpson, G.V. and R.T. Knight, MULTIPLE BRAIN SYSTEMS GENERATING THE RAT AUDITORY EVOKED-POTENTIAL .1. CHARACTERIZATION OF THE AUDITORY-CORTEX RESPONSE. Brain Research, 1993. 602(2): p. 240-250.
5.Lakatos, P., et al., An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. Journal of neurophysiology, 2005. 94(3): p. 1904-1911.
6.Onnes, H.K., The discovery of Superconductivity. Commun. Phys. Lab, 1911. 12: p. 120.
7.Meissner, W. and R. Ochsenfeld, Ein neuer effekt bei eintritt der supraleitfähigkeit. Naturwissenschaften, 1933. 21(44): p. 787-788.
8.Bardeen, J., Two-fluid model of superconductivity. Physical Review Letters, 1958. 1(11): p. 399.
9.Bednorz, J.G. and K.A. Müller, Possible highT c superconductivity in the Ba− La− Cu− O system. Zeitschrift für Physik B Condensed Matter, 1986. 64(2): p. 189-193.
10.Sun, J., et al., Superconductivity and magnetism in the high-T c superconductor YBaCuO. Physical review letters, 1987. 58(15): p. 1574.
11.Ray, P.J., et al., Staging superstructures in high-${T}_{c}$ Sr/O codoped ${mathrm{La}}_{2ensuremath{-}x}{mathrm{Sr}}_{x}{mathrm{CuO}}_{4+y}$. Physical Review B, 2017. 96(17): p. 174106.
12.Ambegaokar, V. and A. Baratoff, Tunneling between superconductors. Physical Review Letters, 1963. 10(11): p. 486.
13.陳衍儒, 國立臺灣大學物理研究所碩士論文, 2015.
14.Hämäläinen, M.S. and R.J. Ilmoniemi, Interpreting magnetic fields of the brain: minimum norm estimates. Medical & biological engineering & computing, 1994. 32(1): p. 35-42.
15.Liang, W.K. and M.S. Wang, Source reconstruction of brain electromagnetic fields - Source iteration of minimum norm (SIMN). Neuroimage, 2009. 47(4): p. 1301-1311.
16.Popescu, M., S.D. Blunt, and T. Chan, Magnetoencephalography source localization using the source affine image reconstruction (SAFFIRE) algorithm. IEEE Transactions on Biomedical Engineering, 2010. 57(7): p. 1652-1662.
17.Tuomisto, T., et al., Studies of auditory evoked magnetic and electric responses: Modality specificity and modelling. Il Nuovo Cimento D, 1983. 2(2): p. 471-483.
18.Howard, M.A., et al., Auditory cortex on the human posterior superior temporal gyrus. Journal of Comparative Neurology, 2000. 416(1): p. 79-92.
19.Mitzdorf, U., Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiological reviews, 1985. 65(1): p. 37-100.
20.Kilgard, M.P. and M.M. Merzenich, Plasticity of temporal information processing in the primary auditory cortex. Nature neuroscience, 1998. 1(8): p. 727.
21.Miyazato, H., et al., A middle-latency auditory-evoked potential in the rat. Brain Research Bulletin, 1995. 37(3): p. 247-255.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top