跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/23 10:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林廷佳
研究生(外文):Ting-Jia Lin
論文名稱:拓撲絕緣體碲化銻薄膜之成長及其特性之研究
論文名稱(外文):Growth and characterization of topological insulatorSb2Te3 thin films
指導教授:張顏暉張顏暉引用關係
指導教授(外文):Yuan-Huei Chang
口試委員:梁啟德謝雅萍
口試委員(外文):Chi-Te LiangYa-Ping Hsieh
口試日期:2018-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:55
中文關鍵詞:拓樸絕緣體物理汽相沉積法碲化銻
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
拓樸絕緣體 (Topological insulator) 重要應用之一為可製成自旋電子元件。因為其擁有的時間反轉對稱性(time reversal symmetry)保護的表面態(surface state)可以抑制背向散射(backscattering)的發生。當拓樸絕緣體的費米能階(fermi level)位於能隙之間時,其樣品內部卻具有絕緣體的特性, 但其樣品表面為金屬態,具有高導電性且能保持其電子自旋特性。因此非常適合用於製成自旋電子元件。
在此研究中,我們利用物理汽相沉積法(Physical vapor deposition)成功將拓樸絕緣體碲化銻(Sb2Te3) 薄膜沉積在藍寶石(Sapphire)基板上。和其他成長碲化銻的方法如分子束磊晶法(MBE)和有機金屬化學汽相沉積法(MOCVD)相比,物理汽相沉積法系統簡單,操作容易,可以低廉成本製成高品質的拓樸絕緣體薄膜。
原子力顯微鏡(AFM)量測中我們觀察到我們成長的碲化銻薄膜表面具有明顯的三角結構且由五層原子層(quintuple layers)為單位層層堆疊而成。另外我們也發現在同樣的長晶製程下,樣品的厚度會與碲化銻粉末和基板的距離相關。再來由X光繞射儀(XRD) 2-θ掃描模式發現碲化銻的晶格結構具有C軸指向的特性,晶格常數C為30.3埃。由能量色散X射線光譜儀(EDS)發現碲化銻薄膜由接近理想比例的43% 碲(Sb)和57 % 銻(Te)所組成。再來由化學分析電子光譜儀(ESCA)所得到的光譜發現碲化銻薄膜由碲與銻元素組成。
我們使用微影製程(lithography)和濕式蝕刻(wet etching)將30 nm 的碲化銻薄膜製做成Hall bar圖案來做所有的電性量測。我們發現碲化銻和鈦(4nm) /金(50nm) 接合下並使用快速高溫熱退火系統(Rapid thermal annealing system)後,材料在室溫到2K之下皆保持歐姆接觸(Ohmic contact)的特性。再來利用鎖向放大器(lock-in amplifier)來量測材料的電性,可以得到在2K時載子的濃度以及電子遷移率分別為1.9x1019 cm-3和184 cm2 /V∙s. 而在磁阻量測中,在低磁下具有反弱局域化現象(Weak anti-localization effect), 證明了碲化銻具有拓樸絕緣體的特性。藉由Hikami-Larkin-Nagaoka(HLN)的模型以及磁阻的量測數據,透過曲線擬和(fitting)的結果,在2K時載子的相位相干長度(Phase coherence length)的值為309 nm.
Topological insulator (TI) has great potential in making into spintronic devices because it has a time reversal symmetry protected surface state that forbids backscattering to occur. For TIs, when the Fermi level is within the bulk bandgap, the bulk of the sample is insulating. However, because there is no energy gap in surface states, the surface is metallic and can be used for spin-dependent transport.
In this study, we report the successful growth of topological insulator Sb2Te3 thin film on Al2O3 substrate by using a physical vapor deposition (PVD) system. Compared with the other TI thin film growth methods, such as molecular beam epitaxy system (MBE), atomic layer deposition, metal organic chemical vapor deposition (MOCVD), PVD has the advantage that it is a simple and cost effective method to grow high quality TI samples.
Atomic force microscopy (AFM) measurements indicate the surface morphology of Sb2Te3 films grown by using PVD have clear triangular structure domains consist of step by step quintuple layers, and the thickness of the thin film is correlated with the distance between Al2O3 substrate and Sb2Te3 source powder. X ray diffraction (XRD) measurement shows Sb2Te3 film grown on Al2O3 substrate is c-axis oriented and the value of lattice constant in the c-direction is 30.3Å. Energy-dispersive spectroscopy (EDS) shows that the percentage composition of Sb and Te atoms in the film are 43% and 57 %, respectively, which is close to ideal 2:3 ratio for Sb2Te3. Electron spectroscopy for chemical analysis (ESCA) measurements indicate that the chemical elements in the thin film consisted of antimony and tellurium.
Standard lock-in method to do measurements from 2K to 300K. Temperature dependent resistivity shows metallic behavior but it has metallic insulator transition at 6K. At low temperature range, the resistivity can be fitted with parallel conduction model showing the coexistence of bulk state and surface state. The concentration is in the order of 1019 cm-3 within 2K to 300K and positive slopes in Hall measurements reveals holes dominated behavior. The mobility is 184 cm2/V∙s at 2K. In the magneto-resistivity measurement at 2K, the cusp feature appears at low field shows the evidence of weak anti-localization effect. Fitting data by using HLN model, we found that the dephasing length of carriers of the thin film is 309 nm at 2K.
Chapter 1 Introduction 1
1.1 Topological insulator 1
1.2 The properties of Antimony Telluride 2
1.3 Motivation 4
Chapter 2 Theory 7
2.1 Drude model 7
2.2 Hall effect 8
2.3 Weak localization and Weak anti-localization 10
2.3.1 Weak localization 10
2.3.2 Weak anti-localization 11
Chapter 3 Experimental techniques 13
3.1 Atomic force microscopy 13
3.1.1 Contact mode 14
3.1.2 Non-contact mode 14
3.1.3 Tapping mode 14
3.2 X-ray diffraction 16
3.3 Energy spectroscopy for chemical analysis (ESCA) 18
3.4 Scanning electron microscopy (SEM) and Energy-dispersive spectroscopy (EDS) 19
3.5 Physical properties measurement system (PPMS) 21
Chapter 4 Experimental Setup 22
4.1 Substrate cleaning process 22
4.2 Quartz tube cleaning process 22
4.3 Growth procedure 23
4.4 Device fabrication 24
Chapter 5 Results and Discussion 27
5.1 The characterization of the Sb2Te3 film 27
5.1.1 The morphology characterization by the atomic force microscopy 27
5.1.2 Comparison of morphology with or without the additional source powder near Al2O3 substrate 29
5.1.3 The importance of prebaking the quartz tube 30
5.1.4 Position dependent thickness 32
5.2 Structural Characterization by the X-ray diffraction 34
5.3 EDS and XPS measurement of the composition of Sb2Te3 Films 35
5.3.1 Energy-dispersive X-ray spectroscopy (EDS) composition analysis 35
5.3.2 X-ray photoelectron spectroscopy (XPS) component analysis 36
5.4 Electrical measurement 39
5.4.1 The Ohmic contact between metal - Sb2Te3 junction 40
5.4.2 The temperature dependent resistivity measurement 41
5.4.3 Hall measurement with different temperatures 43
5.5.4 Magnetoresistance 46
Chapter 6 Conclusion 50
Reference 52
[1] C. Z. Chang, P. Tang, X. Feng, K. Li, X. C. Ma, W. Duan, K. He and Q. K. Xue, Physical Review Letters, 115(13). (2015)
[2] Ji. S. Wang, L. Chen, X. K. He, Y. Wang, X. Ma & Q. Xue, Extended Abstracts of the 2015 International Conference on Solid State Devices and Materials. (2015).
[3] Z. Yue, B. Cai, L. Wang, X. Wang and M. Gu, Science Advances. 2(3): (2016)
[4] Z. Yue, G. Xue, J. Liu, Y. Wang and M. Gu, Nature Communications. 8: ncomms15354. (2017)
[5] H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang & S. C. Zhang, Nature Physics, 5(6), 438-442. (2009)
[6] A. A. Taskin, S. Sasaki, K. Segawa and Y. Ando, Phys. Rev. Lett, 109(6),06683. (2012)
[7] Z. Zeng, T. A. Morgan, D. Fan, C. Li, Y. Hirono, X. Hu, Y. Zhao, J. S. Lee, J. Wang, Z.M. Wang, S. Yu, M. E. Hawkridge, M. Benamara and G. J. Salamo, AIP Advances 3, 072112. (2013)
[8] Y. Lin, Y. Chen, C. Lee, J. Wu, H. Lee & Y. Chang, AIP Advances 6(6), 065218 (2015).
[9] H. Y. Lee, Y. S. Chen, Y. C. Lin, J. K. Wu, Y. C. Lee, B. K. Wu, M. Chern, C. T. Liang and Y. H. Chang, Journal of Alloys and Compounds 686,989-997, (2016)
[10] S. Zastrow, J. Gooth, T. Boehnert, S. Heiderich, W. Toellner, S. Heimann, S. Schulz and K. Nielsch, Semiconductor Science and Technology, 28(3), 035010. (2013)
[11] Y. Takagaki, A. Giussani, K. Perumal, R. Calarco and K. Friedland, Physical Review B, 86(12). (2012).
[12] G. Bendt, S. Zastrow, K. Nielsch, P.S. Mandal, J. Sánchez-Barriga, O. Rader & S. Schulz, Journal of Materials Chemistry A, 2(22), 8215. (2014).
[13] P. Drude. Annalen der Physik. 306 (3): 566. (1900)
[14] Edwin Hall. American Journal of Mathematics. 2 (3): 28792. (1879)
[15] B. L Altshuler, D. Khmel''nitzkii, A. I. Larkin and P. A. Lee, Phys. Rev. B. 22: 5142. (1980).
[16] S, A. Hikami, I .Larkin and Y. Nagaoka. Progress of Theoretical Physics. 63 (2): 707–710. (1980)
[17]A.V. Naumkin, A.W. Kraut-Vass, S.W. Gaarenstroom and C.J Powell.NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, version 4.1 .Gaithersburg MD, USA: National Institute of Standards , (2012)
[18] M. Shaik, & I. A. Motaleb, IEEE International Conference on Electro-Information Technology. (2013)
[19] D. Gu, D. Nminibapiel, H. Baumgart, H. Robinson & V. Kochergin, ECS Transactions, 41(2):255-261(2011)
[20] Y. Saito, P. Fons, L. Bolotov, N. Miyata, A. V. Kolobov & J. Tominaga, AIP Advances, 6(4), 045220. (2016).
[21] D. Das, K. Malik, A. K. Deb, S. Dhara, S. Bandyopadhyay and A. Banerjee , Journal of Applied Physics, 118(4), 045102. (2015).
[22] Y. Jiang, Y. Y. Sun, M. Chen, Y. Wang, Z. Li, C. Song, K. He, L. Wang, X. Chen, Q. K. Xue, X. Ma and S. B. Zhang, Physical Review Letters, 108(6). 066809. (2012)
[23] S. B. Hu, R. Z. Tang, C. J. Tian, W. Li, L. H. Feng, J. Q. Zhang & L. L. Wu, Advanced Materials Research, 225-226, 789-793. (2011).
[24] L. Zheng, X. Cheng, D. Cao, Q. Wang, Z. Wang, C. Xia, L. Shen, Y. Yu and D. Shen, RSC Advances, 5(50), 40007-40011. (2015).
[25] R. Borghese, M. Brucale, G. Fortunato, M. Lanzi, A. Mezzi, F. Valle and D. Zannoni, Journal of Hazardous Materials, 309, 202-209. (2016).
[26] R. K. Gopal, S. Singh, A. Mandal, J. Sarkar & C. Mitra, Scientific Reports, 7(1). (2017)
[27] L. M. Goncalves, P. Alpuim, A. G. Rolo and J. H. Correia, Thin Solid Films, 519(13), 4152-4157. (2011).
[28] A. Asgari, S. Babanejad, & L. Faraone, Journal of Applied Physics, 110(11), 113713. (2011).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top