跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/23 13:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林岳軒
研究生(外文):Yueh-Hsuan Lin
論文名稱:離子蝕刻製程對高溫超導量子干涉元件特性影響之研究
論文名稱(外文):Effects of ion-beam etching on High-Tc Superconducting Quantum Interference Devices
指導教授:王立民王立民引用關係
口試委員:廖書賢陳昭翰吳秋賢陳坤麟
口試日期:2018-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:61
中文關鍵詞:高溫超導釔鋇銅氧雙晶基板超導量子干涉元件微橋結構離子蝕刻研磨拋光
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討以鈦酸鍶雙晶基板製作釔鋇銅氧超導量子干涉元件(Superconductor Quantum Interference Device, SQUID)之特性,過程中以離子蝕刻製程對高溫超導釔鋇銅氧微橋的特性影響。

超導量子干涉元件的製程步驟可分成基板準備、薄膜成長、黃光微影與蝕刻製程。在離子蝕刻過程中可能會因離子束能量過大造成薄膜失去超導特性,或是使薄膜過熱與再結晶,讓微橋結構的臨界電流與臨界溫度遠低於蝕刻前的薄膜特性。透過調整離子束能量以及改良冷卻系統讓原本寬度4 μm厚度200 nm的微橋結構臨界電流從1 mA提升至9 mA,且在表面形貌有明顯的差異。另外在製作超導量子干涉元件的過程中,雙晶基板經過原子力顯微鏡掃描後發現表面平整度不如預期,且在雙晶晶界處有約10~200 nm的溝槽深度,因此也改進拋光研磨條件讓基板表面粗糙度降至0.4 ~ 0.8 nm ,且雙晶晶界使用原子力顯微鏡量測顯示與基板其他位置無異,表示雙晶缺陷到達原子力顯微鏡的偵測極限約數個奈米以下。

後續使用鈦酸鍶雙晶基板製作超導量子干涉元件,透過拋光研磨以及改良離子蝕刻解決了因基板雙晶晶界不平整造成電阻-溫度量測上剩餘電阻或是因離子束轟擊過熱失去超導性的情形,成功地做出臨界電流I_c 約80~230 μA,峰值電壓V_pp 約 8~15 μV的超導量子干涉元件。
This study mainly discusses the characteristics of the SQUIDs (Superconductor Quantum Interference Devices) fabricated by the SrTiO_3 bicrystal substrates, and the influence of the ion etching process on the characteristics of the high-Tc YBa2Cu3Oy (YBCO) superconducting microbridge.
The process steps of the SQUIDs can divide into substrate preparation, film growth, lithography and etching processes. In the ion etching process, the film may lose superconductivity due to excessive ion beam energy or the film may be overheated and recrystallized, so that the critical current and critical temperature of the microbridge structure are much lower than those of the film before etching. By adjusting the ion beam energy and improving the cooling system, the critical current of the YBCO microbridge structure with a width of 4 μm and a thickness of 200 nm is increased from 1 mA to 9 mA, and the surface morphology is significantly improved. In addition, in the process of fabricating SQUIDs, the atomic force microscopy(AFM) indicated that the surface flatness of bicrystal substrates was not good as expected, and there was a groove depth of about 10~200 nm at the grain boundaries(GBs). Thus improving the polishing process is needed. Therefore, the polishing condition is optimized to reduce the surface roughness of the substrate to be 0.4 ~ 0.8 nm, and the measurement of the bicrystal grain boundaries by AFM is the same as other positions of the substrates without GBs, indicating that the grain boundary defects reach the detection limit of the AFM, being about several nanometers below.
Subsequently, using the SrTiO3 bicrystal substrates to fabricate SQUIDs, through the new polishing process and improved ion etching to solve the problems of residual resistance due to the groove of the bicrystal GBs in substrates and the loss of superconductivity due to the ion beam bombardment overheating observed in the resistance-temperature measurement. Finally, the SQUIDs were successfully fabricated and show that the critical current Ic was about 80 to 230 μA and the peak to peak voltage Vpp was about 8 to 15 μV.
摘要 i
Abstract ii
目錄 iv
圖目錄 v
表目錄 ix
Chapter 1 緒論 1
1.1 研究背景 1
1.2 文獻探討 3
1.3 研究動機 7
Chapter 2 原理介紹 8
2.1 高溫超導特性 8
2.2 約瑟芬森接面(Josephson junction) 11
2.3 約瑟芬森接面模型(RCSJ & RSJ model) 12
2.4 直流超導量子干涉元件(DC SQUID)原理 15
2.5 圖形計算 18
Chapter 3 實驗步驟與儀器介紹 20
3.1 實驗流程 20
3.2 基板準備 21
3.3 脈衝式雷射沉積(Pulsed Laser Deposition) 24
3.4 黃光微影製程 28
3.5 離子蝕刻 29
3.6 量測分析儀器 30
Chapter 4 實驗結果與討論 33
4.1 實驗結果概述 33
4.2 釔鋇銅氧使用脈衝式雷射沉積鍍膜之流程 33
4.3 蝕刻問題 35
4.4 研磨拋光 37
4.5 離子蝕刻對釔鋇銅氧微橋之電性影響 41
4.6 超導量子干涉元件之製作 50
4.7 SQUID之特性量測 55
Chapter 5 結論 58
[1] H. K. Onnes, Leiden Comm., Vols. 122b, 122c, 1911.
[2] J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev., vol. 108, p. 1175, 1957.
[3] J. G. Bednorz and K. A. M. üller, Z. Phys B, vol. 64, p. 198.
[4] C.W.Chu et al, Phys. Rev. Lett., vol. 405, no. 58, 1987.
[5] B. D.Josephson, "Possible new effect in superconductor tunneling," Phys. lett., 1952.
[6] D. Winkler, Y. M. Zhang, P. A. Nilsson, E. A. Stepantsov and T. Claeson, Phys. Rev. Lett., vol. 72, p. 1260, 1994.
[7] Z. G. Ivannov, E. A. Stepantsov, T. Claeson, F. Wenger, S. Y. Lin, N. Khare and P. Chaudhari, Phys. Rev. B, vol. 57, p. 602, 1998.
[8] N. Missert, T. E. Harvey, R. H. Ono and C. D. Reintsemal, Appl. Phys. Lett., vol. 63, p. 1690, 1993.
[9] K. Herrmann, Y. Zhang, H. M. Muck, J. Schubert, W.Zander and A. I. Braginski, Supercond. Sci. Technol., vol. 4, p. 583.
[10] J. Clarke and A. I. Braginski, The SQUID handbook, 2004.
[11] J. Gao, Y. M. Boguslavskij, B. B. G. Klopman, D.Terpstral, R. Wijbrans, G. J. Gerritsma and H. Rogalla, J. Appl. Phys., vol. 72, p. 575, 1992.
[12] H.-W. Yu, M.-J. Chen, H. C. Yang, S. Y. Yang and H. E. Horng, "Effect of the grooved SrTiO bicrystal line on the YBa2Cu3Oy grain boundary," Physica C, vol. 333, p. 163, 2000.
[13] Alff, L.; Fischer, G.M.; Gross, R.; Kober, F.; Beck, A.; Husemann, K.D.; Nissel, T., "Dry-etching processes for high-temperature superconductors," Physica C, pp. 277-286, 1992.
[14] H. Schneidewind, F. Schmidl, S. Linzen and P. Seidel, "The possibilities and limitations of ion-beam etching of YBCO thin films and microbridges," Physica C, vol. 250, pp. 191-201, 1995.
[15] W.Meissner and R.Ochsenfeld, Naturwiss, vol. 21, p. 787, 1933.
[16] F.London, H.London, Proc. Roy Soc., vol. A155, p. 71, 1935.
[17] C. J. Gorter and H. B. G. Casimir, Physica, vol. 1, p. 306, 1933.
[18] D. Dew-Hughes, "The critical current of superconductors: an historical review," Low Temp. Phys., vol. 27, pp. 9-10, 2001.
[19] [Online]. Available: https://commons.wikimedia.org/wiki/File:Magnetisation_and_superconductors.png#globalusage.
[20] [Online]. Available: https://commons.wikimedia.org/wiki/File:SQUID_polaris%C3%A9_en_courant.png?uselang=fr.
[21] 陳衍儒, 高溫超導量子干涉元件之製程與特性研究.
[22] K. Enpuku, "Voltage Verse Flux Relation of High Tc DC Superconducting Quantum Interference Device with Different Inductances," Jpn. J. Appl. Phys., vol. 32, p. L1407, 1993.
[23] D. d. Ligny and P. Richet, "High-temperature heat capacity and thermal expansion of SrTiO3 and SrZrO3 perovskite," Phys. Rev. B, vol. 53, p. 6, 1996.
[24] D. Dimos, P. Chaudhari, J. Mannhart and F. K. LeGoues, "Orientation Dependence of Grain-Boundary Critical Currents in YBCO Bicrystals," vol. 61, p. 2, 1988.
[25] K. Enpuku, T. Minotani, F. Shiraishi, k. Kandori and S. Kawakami, "High-Tc dc SQUID Utilizing Bicrystal Junctions with 30 Degree Misorientation Angle," vol. 9, p. 2, 1999.
[26] [Online]. Available: http://slideplayer.com/slide/8012174/.
[27] R. Desfeux, A. D. Costa, C. Mathieu, J. Hamet, T. Doan and N. Cheene, "Influence of the buffer layer on the mode growth of YBCO superconducting thin films studied by atomic force microscopy".
[28] "Arun Singh Chouhan," [Online]. Available: https://www.researchgate.net/publication/317284325.
[29] [Online]. Available: https://www.egr.msu.edu/eceshop/testingfacility/laser/.
[30] [Online]. Available: https://www.halbleiter.org/en/dryetching/etchprocesses/.
[31] [Online]. Available: https://www.imagesco.com/articles/superconductors/four-point-electrical-probe.html.
[32] [Online]. Available: https://en.wikipedia.org/wiki/Atomic_force_microscopy.
[33] B. Prakash and S.Chakraverty, "Realization of atomically flat steps and terraces like surface of SrTiO3 (001) single crystal by hot water etching and high temperature annealing," Solid State Communications, Vols. 28-30, p. 213, 2015.
[34] P. Marx, D. R. Gross and D. Achim, Applied Superconductivity: Josephson Effect and Superconducting Electronics, Garching: Walther-Meißner-Institut, 2005.
[35] A. F. Andreev, "Thermal conductivity of the intermediate state of superconductors," Sov. Phys. JETP., no. 19, p. 1228, 1964.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top