跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/19 04:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王思淮
研究生(外文):Szu-Huai Wang
論文名稱:開發番茄青枯病和晚疫病之生物防治技術
論文名稱(外文):Establishment of techniques for biocontrol of tomato bacterial wilt and late blight
指導教授:劉瑞芬劉瑞芬引用關係
指導教授(外文):Ruey-Fen Liou
口試委員:張雅君陳穎練
口試委員(外文):Ya-Chun ChangYing-Lien Chen
口試日期:2018-07-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物醫學碩士學位學程
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:76
中文關鍵詞:地衣芽孢桿菌拮抗物質生物防治青枯病菌晚疫病菌土壤微生物篩選
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
番茄為臺灣重要蔬果,具有高經濟價值。臺灣氣候及環境適宜,全臺皆可種植番茄,主要產區為中南部。雖然種植不難,但番茄容易罹患許多病害,包括病毒病、青枯病及晚疫病等,常造成農民嚴重經濟損失,因此防治這些病害成為番茄種植的重要課題。在現今環保意識抬頭的情況下,生物防治無疑提供一個良好的選項。本實驗室先前從疫病菌抑菌土所分離的地衣芽孢桿菌 Bacillus licheniformis (31-1) 對於青椒疫病有顯著抑制效果,且可促進植株生長。本研究發現 B. licheniformis (31-1) 外泌至培養基的拮抗物質可抑制多種病原菌生長,包括腐霉病菌、疫病菌、番茄萎凋病菌及炭疽病菌等;此外,B. licheniformis (31-1) 產生之揮發性物質也能抑制前述部分病原菌的生長。為進一步鑑別 B. licheniformis (31-1) 外泌拮抗物質的成分,將 B. licheniformis (31-1) 大量培養後,進行拮抗物質萃取、HPLC 及 FIA-MS 分析,再經由比對 AntiMarin 資料庫發現其中兩個化合物為 ochrindoles D 和 streptovirudin-A1。在盆栽防治實驗中,澆灌處理 B. licheniformis (31-1) 可降低青枯病的罹病嚴重度,但無論是噴灑或是澆灌處理 B. licheniformis (31-1) 都無法抑制番茄晚疫病的發生,澆灌處理也無法促進番茄植株生長。此外,為獲得更多生物防治菌,本研究採集土壤樣本,以蔬菜汁培養並分離其中具潛力之微生物。目前以盆栽接種試驗篩選出一株具有防治青枯病潛力的細菌 (6-2),經由16S rDNA 序列親緣關係分析,發現此菌可能為 Sinomonas 屬的成員。
Tomato (Solanum lycopersicum L.) is an important economic crop in Taiwan, with the main cultivation areas encompassing the middle and southern Taiwan. It is susceptible to various diseases, including virus diseases, bacterial wilt, late blight, which cause heavy economic loss for the farmers. Consequently, management of tomato diseases is always an important issue, which usually involves the application of chemical pesticides. However, pesticide overuse is a direct threat not only to the environmental quality but also to food safety. As a result, biocontrol has become a better choice for crop cultivation in a ecofriendly and safe way. Previously, Bacillus licheniformis (31-1) was found to inhibit the growth of various pathogens including Phytophthora capsici, is effective for the control of Phytophthora blight on bell pepper, and is able to accelerate the growth of this plant. In this study, it is demonstrated that metabolites secreted by B. licheniformis (31-1) can inhibit the growth of various pathogens, including Pythium spp., Phytophthora spp., Fusarium spp. and Colletotrichum boninense. Volatile organic compounds produced by B. licheniformis (31-1) can also inhibit the growth of some of the aforementioned pathogens. Analyses based on butanol extraction, HPLC, and FIA-MS identified two of the substances secreted by B. licheniformis (31-1), namely ochrindoles D and streptovirudin-A1, respectively. When applied by soil drench on tomato plants grown in pots, B. licheniformis (31-1) reduced the disease severity of bacterial wilt. However, no matter applied by soil drench or by phyllosphere spray, B. licheniformis (31-1) failed to reduce the disease incidence of late blight. Application by soil drench failed to promote the growth of tomato. As well, to get more isolates for efficient biocontrol of tomato bacterial wilt, some bacterial and fungal isolates were collected from soil samples and screened for biocontrol potential. Among them, one bacterial isolate (6-2) showed good ability to reduce the disease severity of bacterial wilt. It is likely Sinomonas sp. as suggested by phylogenetic analysis of 16S rDNA sequence.
中文摘要………………………………………………………………......……...II
ABSTRACT……………………………………………………….….….… .….III
壹、 前言……………………………………………………………..……....1
一、 番茄簡介…………………………………………………..…………..1
二、 番茄青枯病…………………………………………………...……….3
三、 番茄晚疫病……………………………………………………..……..4
四、 地衣芽孢桿菌 (Bacillus licheniformis) 應用於生物防治.…..……...6
五、 土壤微生物篩選..……………………………………………………..9
六、 本研究的目的……………..……………………………………….….9
貳、 材料與方法……………………………………………………..……..10
一、 拮抗菌特性試驗……………………………………………………..10
二、 拮抗菌分泌物質分析………………………………………………..12
三、 番茄盆栽試驗…………………………………………….………….15
四、 土壤微生物篩選與鑑定……………………………..………………18
參、 結果……………………………………………………………………21
一、 地衣芽孢桿菌 Bacillus licheniformis (31-1) 抑菌特性測試………21
二、 溫室盆栽試驗………………………………………………..………25
三、 土壤拮抗菌篩選…………………………………………..…………28
肆、 討論……………………………………………………………………30
一、 B. licheniformis (31-1) 拮抗能力分析………………………………30
二、 B. licheniformis (31-1) 於番茄盆栽的應用………………………....33
三、 土壤拮抗菌篩選…………………………………………………..…35
四、 未來展望與應用……………………………………………….…….37
伍、 參考文獻……………………………………………..………………..39
陸、 附表……………………………………………………………………48
柒、 附圖……………………………………………………………………50
捌、 附錄一………………………………………………………………....75
安寶貞、劉瑞芬、蔡志濃。2010。近年我國重大疫病之研究。近年來我國重大作物病害之發生及其診斷、監測與防治研討會專刊,127 – 146頁,台中。
李秉峰。2015。評估 Bacillus licheniformis (31-1) 對於甜椒疫病之生物防治潛力。國立臺灣大學植物醫學碩士學位學程碩士論文。
李建勳、柯天雄、陳正次。2009。小果番茄新品種「種苗亞蔬 22 號」栽培管理。種苗科技專訊 65: 11-13。
邱硯詩。2002。最近為害台灣中部馬鈴薯之青枯病菌菌系。國立中興大學植物病理學系碩士論文。
林駿奇。2009。作物青枯病之生態與防治。花蓮區農業專訊 70: 18-21。
吳雅芳、林志鴻、王肇芬、鄭安秀。2011。馬鈴薯青枯病菌 (Ralstonia solanacearum phylotype II/race 3/biovar 2) 於雲林縣斗南地區田間之族群密度與馬鈴薯罹病率調查。植病會刊 20: 68-77。
周浩平、陳昱初、黃德昌。2014。應用液化澱粉芽孢桿菌防治土壤傳播性病害之成效評估。高雄區農業專訊 88: 16-18。
陳哲民、陳任芳。2002。番茄晚疫病防治策略。花蓮區農業專訊 42: 2-5。
陳榮坤。1999。種子披系統之設置與測試。國立臺灣大學農藝系研究所碩士論文。
管彤。2012。篩選能產生次級代謝物以誘導植物抗病毒病害的土壤微生物。國立臺灣大學植物病理與微生物學所碩士論文。
蔡志濃、安寶貞、王姻婷、王馨媛、胡瓊月。2009。利用中和後之亞磷酸溶液防治馬鈴薯與番茄晚疫病。台灣農業研究 58: 185-195。
劉依昌、傅成美、陳正次、陳農哲。1997。小果番茄臺南亞蔬六號之育成。臺南區農業改良場研究彙報 34: 1-13。
劉依昌、黃瑞彰、蔡孟旅、黃秀雯。2016。小果番茄設施栽培及健康管理技術。行政院農業委員會臺南區農業改良場。臺南。48頁。
Adhikari, M., Yadav, D. R., Kim, S. W., Um, Y. H., Kim, H. S., Lee, S. C., Song, J. Y., Kim, H. G., and Lee, Y. S. 2017. Biological control of bacterial fruit blotch of watermelon pathogen (Acidovorax citrulli) with rhizosphere associated bacteria. Plant Pathol. J. 33: 170-183.
Ann, P. J., Hsieh, T. F., Tsai, J. N., Wang, I. T., and Lin, C. Y. 2000. A simple method for use of phosphorous acid and the spectra of disease control. Plant Pathol. Bull. 9: 179.
Alvarez-Ordóñez, A., Begley, M., Clifford, T., Deasy, T., Considine, K., O''Connor, P., Ross, R. P., and Hill, C. 2014. Investigation of the antimicrobial activity of Bacillus licheniformis strains isolated from retail powdered infant milk formulae. Probiotics & Antimicro. Prot. 6: 32-40.
Bao, Y. Y., Huang, Z., Mao, D. M., Sheng, X. F., and He, L. Y. 2015. Sinomonas susongensis sp. nov., isolated from the surface of weathered biotite. Int. J. Syst. Evol. Microbiol. 65: 1133-7.
Bardin, S. D., H. C. Huang, and J. R. Moyer. 2004. Control of Pythium damping-off of sugar beet by seed treatment with crop straw powders and a biocontrol agent. Biological Control 29: 453-460.
Bourke, P. M. A. 1964. Emergence of potato blight, 1843-46. Nature 203: 805–808.
Buddenhagen, I., Sequeira, L., and Kelman. A. 1962. Designation of races in Pseudomonas solanacearum. Phytopathology 52: 726.
Buddenhagen, I., Kelman, A., 1964. Biological and physiological aspects of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 2, 203–230.
Buttachon, S., Ramos, A. A., Inácio, Â., Dethoup, T., Gales, L., Lee, M., Costa, P. M., Silva, A. M. S., Sekeroglu, N., Rocha, E., Pinto, M. M. M., Pereira, J. A., and Kijjoa, A. 2018. Bis-indolyl benzenoids, hydroxypyrrolidine derivatives and other constituents from cultures of the marine sponge-associated fungus Aspergillus candidus KUFA0062. Mar. Drugs 16: 119.
Cazorla, F. M., Duckett, S. B., Bergström, E. T., Noreen, S., Odijk, R., Lugtenberg, B. J., Thomas-Oates, J. E., and Bloemberg, G. V. 2006. Biocontrol of avocado Dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Mol. Plant Microbe Interact. 19: 418-28.
Cohen, T., and Coffey, M. D. 1986. Systemic fungicides and the control of oomycetes. Annu. Rev. Phytopathol. 24: 311-338
De Guzman, F. S., Bruss, D. R., Rippentrop, J. M., Gloer, K. B., Gloer, J. B., Wicklow, D. T., Dowd, P. F. 1994. Ochrindoles A-D: new bis-indolyl benzenoids from the sclerotia of Aspergillus ochraceus NRRL 3519. J. Nat. Prod. 57: 634-9.
De la Vega, L.M., Barboza-Corona, J.E., Aguilar-Uscanga, M.G., and Ramirez-lepe, M. 2006. Purification and characterization of an exochitinase from Bacillus thuringiensis subsp. Aizawai and its action against phytopathogenic fungi. Can. J. Microbiol. 52: 651-657.
Denny, T. P. 2006. Plant pathogenic Ralstonia species. Pages 573-644 in: Plant-associated bacteria. S. S. Gnanamanickam ed., Springer, Dordrecht, Netherlands, 718 pp.
Dischinger, J., Josten, M., Szekat, C., Sahl, H. G., and Bierbaum, G. 2009. Production of the novel two-peptide lantibiotic lichenicidin by Bacillus licheniformis DSM 13. PLoS One 4: 67-88.
Eckardt, K., Thrum, H., Bradler, G., Tonew, E., and Tonew, M. 1975. Streptovirudins, new antibiotics with antibacterial and antiviral activity II. Isolation, chemical characterization and biological activity of streptovirudins A1, A2, B1, B2, C1, C2, D1 and D2. J. Antibiot. 28: 274-279.
Esquenazi, Eduardo., Yang, Y. L., Watrous, J., Gerwick, W. H., and Dorrestein, P. C. 2009. Imaging mass spectrometry of natural products. Nat. Prod. Rep. 26: 1521-1534.
Farmer, E. E., Johnson, R. R., and Ryan, C. A. 1992. Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol. 98:995-1002.
Fegan, M., and Prior, P. 2005. How complex is the Ralstonia solanacearum species complex? Pages 449-461 in: Bacterial wilt disease and the Ralstonia solanacearum species complex. C. Allen, P. Prior, and A. C. Hayward, eds. APS Press, St. Paul, MN, USA, 510 pp.
Flier, W. G., Grünwald, N. J., Kroon, L. P., Sturbaum, A. K., van den Bosch, T. B., Garay-Serrano, E., Lozoya-Saldaña, H., Fry, W. E., Turkensteen, L. J. 2003. The population structure of Phytophthora infestans from the Toluca valley of central Mexico suggests genetic differentiation between populations from cultivated potato and wild Solanum spp. Phytopathology 93: 382-90.
Fry, W. E., Goodwin, S. B., Dyer, A. T., Matuszak, J. M., Drenth, A., Tooley, P. W., Sujkowski, L. S., Koh, Y. J., Cohen, B. A., Spielman, L. J., Deahl, K. L., Inglis, D. A., and Sandlan, K. P. 1993. Historical and recent migrations of Phytophthora infestans: Chronology, pathways, and implications. Plant Dis. 77: 653–661.
Fry, W. E., Goodwin, S. B., Matuszak, J. M., Spielman, L. J., Milgroom, M. G., and Drenth, A. 1992. Population genetics and intercontinental migrations of Phytophthora infestans. Annu. Rev. Phytopathol. 30: 107–130.
Fox, G. E., Magrum, L. J., Balch, W. E., Wolfe, R. S., and Woese, C. R. 1977. Classification of methanogenic bacteria by 16S ribosomal RNA characterization.. Proc. Natl. Acad. Sci. 74: 4537-41.
Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., and Ryals, J. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261: 754–756.
Galkiewicz, J.P., and Kellogg, C. A. 2008. Cross-kingdom amplification using bacteria-specific primers: complications for studies of coral microbial ecology. Appl. Environ. Microbiol. 74: 7828-7831.
Gomaa, E. Z. 2012. Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: Their potential in antifungal biocontrol. J. Microbiol.50: 103-111.
Goodwin, S. B., Drenth, A., and Fry, W. E. 1992. Cloning and genetic analyses of two highly polymorphic, moderately repetitive nuclear DNAs from Phytophthora infestans. Curr. Genet. 22:107-115.
Goss, E. M., Tabima, J. F., Cooke, D. E. L., Restrepo, S., Fry, W. E., Forbes, G. A., Fieland, V. J., Cardenas, M., and Gr¨unwald, N. J. 2014. The Irish potato famine pathogen Phytophthora infestans originated in central Mexico rather than the Andes. Proc. Natl. Acad. Sci. 111: 8791-8796.
Griffith, G. H., and Shaw, D. S. 1998. Polymorphisms in Phytophthora infestans: four mitochondrial haplotypes are detected after PCR amplification of DNA from pure cultures or from host lesions. Appl. Environ. Microbiol. 64: 4007-4014.
Grünwald, N. J., Flier, W. G., Sturbaum, A. K., Garay-Serrano, E., van den Bosch, T. B., Smart, C. D., Matuszak, J. M., Lozoya-Saldaña, H., Turkensteen, L. J., and Fry, W. E. 2001. Population structure of Phytophthora infestans in the Toluca valley region of central Mexico. Phytopathology 91: 882-90.
Guo, Q. Q., Ming, H., Meng, X. L., Huang, J. R., Duan, Y. Y., Li, SH., Li, S., Zhang, J. X., Li, W. J., and Nie, G. X. 2015. Sinomonas halotolerans sp. nov., an actinobacterium isolated from a soil sample. Antonie. Van. Leeuwenhoek. 108: 887-95.
Haki, G. D., and Rakshit, S. K. 2003. Developments in industrially important thermostable enzymes: a review. Bioresour. Technol. 89: 17-34.
Hanson, P., Lu, S. F., Wang, J. F., Chen, W., Kenyon, L., Tan, C. W., Kwee, L. T., Wang, Y. Y., Hsu, Y. C., Schafleitner, R., Ledesma, D., and Yang, R. Y. 2015. Conventional and molecular marker-assisted selection and pyramiding of genes for multiple disease resistance in tomato. Scientia Horticulturae 201: 346-354.
Hayward, A. C. 1964. Characteristics of Pseudomonas solanacearum. J. Appl. Bacteriol. 27: 265-277.
He, L. Y., Sequeira, L. and Kelamn, A. 1983. Characteristics of strains of Pseudomonas solanacearum from China. Plant Dis. 67: 1357-1361.
Howe, G. A., Lightner, J., Browse, J., and Ryan, C. A. 1996. An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell 8: 2067-2077.
Huang, C. H., Chang, M. T., Huang, L., and Chu, W. S. 2012a. Development of a novel PCR assay based on the gyrase B gene for species identification of Bacillus licheniformis. Mol. Cell Probes 26: 215-7.
Huang, T. P., Tzeng, D. D., Wong, A. C., Chen, C. H., Lu, K. M., Lee, Y. H., Huang, W. D., Hwang, B. F., and Tzeng, K. C. 2012b. DNA polymorphisms and biocontrol of Bacillus antagonistic to citrus bacterial canker with indication of the interference of phyllosphere biofilms. PLoS One.7: e42124.
Johnson, D. A., Inglis, D. A., and Miller, J. S. 2004. Control of potato tuber rots caused by oomycetes with foliar applications of phosphorous acid. Plant Dis. 88: 1153-1159.
Jyan, M. H., Ann, P. J., Tsai, J. N., Hsih, S. D., Chang, T. T. and Liou, R. F. 2004. Recent occurrence of Phytophthora infestans US-11 as the cause of severe late blight on potato and tomato in Taiwan. Can. J. Plant. Pathol. 26: 188-192.
Kang, M. S., Park, J. J., Singh, I., and Phillips, L. A. 1981. Streptovirudin inhibits glycosylation and multiplication of vesicular stomatitis virus. Biochem. Biophys. Res. Commun. 99: 422-8.
Kayalvizhi, N. and Gunasekaran, P. 2010. Purification and Characterization of a novel broad-spectrum bacteriocin from Bacillus licheniformis MKU3 Biotechnol. Bioproc. E. 15: 365.
Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M. , Na, H., Park, S. C., Jeon, Y. S., Lee, J. H., Yi, H., Won, S., and Chun, J. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62:716–721.
Kloepper, J. W., and Schroth, M. N. 1981. Relationship of in vitro antibiosis of plant growth-promoting rhizobacteria to plant-growth and the displacement of root. Microflora. Phytopathology 71:1020-4.
Ko, W. H., Tsou, Y. J., Ju, Y. M., Hsieh, H. M., and Ann, P. J. 2010a. Production of a fungistatic substance by Pseudallescheria boydii isolated from soil amended with vegetable tissues and its significance. Mycopathologia 169: 125-31.
Ko, W. H., Tsou, Y. J., Lin, M. J., and Chern, L. L. 2010b. Activity and characterization of secondary metabolites produced by a new microorganism for control of plant diseases. New Biotechnol. 27: 397-402.
Kong, H. G., Kim, J. C., Choi, G. J., Lee, K. Y., Kim, H. J., Hwang, E. C., Moon, B. J., Lee, S. W. 2010. Production of surfactin and iturin by Bacillus licheniformis N1 responsible for plant disease control activity. Plant Pathol. J. 26: 170-177.
Kuhn, D. A., and Starr, M. P. 1960. Arthrobacter atrocyaneus n. sp. and its blue pigment. Arch. Microbiol. 36: 175-181.
Lee, L. H., Azman, A. S., Zainal, N., Yin, W. F., Mutalib, N. S., and Chan, K. G. 2015. Sinomonas humi sp. nov., an amylolytic actinobacterium isolated from mangrove forest soil. Int. J. Syst. Evol. Microbiol. 65: 996-1002.
Liaw, C. C., Yang, Y. L., Lin, C. K., Lee, J. C., Liao, W. Y., Shen, C. N., Sheu, J. H., and Wu, S. H. 2015. New meroterpenoids from Aspergillus terreus with inhibition of cyclooxygenase-2 expression. Org. Lett. 17: 2330-3.
Lim, J. H., and Kim, S. D. 2010. Biocontrol of Phytophthora blight of red pepper caused by Phytophthora capsici using Bacillus subtilis AH18 and B. licheniformis K11 formulations. J. Korean Soc. Appl. Biol. Chem. 53: 766-773.
Lin, C. H. 2008. Application of population profiling and detection of Ralstonia solanacearum in Taiwan. Plant Pathol. Bull. 3: 147-155.
Lin, X., Lee, C. G., Casale, E. S., and Shih, J. C. H. 1992. Purification and characterization of a keratinase from a feather-degrading Bacillus licheniformis strain. Appl. Environ. Microbiol. 58: 3271-3275.
Liu, W. T., Yang, Y. L., Xu, Y., Lamsa, A., Haste, N. M., Yang, J. Y., Ng, J., Gonzalez, D., Ellermeier, C. D., Straight, P. D., Pevzner, P. A., Pogliano, J., Nizet, V., Pogliano, K., and Dorrestein, P. C. 2010. Imaging mass spectrometry of intraspecies metabolic exchange revealed the cannibalistic factors of Bacillus subtilis. Proc. Natl. Acad. Sci. 107: 16286-90.
Mckay, A. G., and Floyd, R. M. 1992. Phosphonic acid control downy mildew (Peronospora parasitica) in cauliflower curds. Aust. J. Exp. Agric. 32: 127–129.
Nanita, S. C., and Kaldon, L. G. 2016. Emerging flow injection mass spectrometry methods for high-throughput quantitative analysis. Anal. Bioanal. Chem. 408: 23-33.
Oliveira, R. S., Rocha, I., Ma, Y., Vosátka, M., and Freitas, H. 2016. Seed coating with arbuscular mycorrhizal fungi as an ecotechnological approach for sustainable agricultural production of common wheat (Triticum aestivum L.). J Toxicol Environ Health A. 79: 329-37.
Peeters, N., Guidot, A., Vailleau, F., and Valls, M. 2013. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol. Plant Pathol. 14:651–662.
Pegg, K. G., Whiley, A. W., Saranah, J. B., and Glass, R. J. 1985. Control of Phytophthora root rot of avocado with phosphorous acid. Aust. Plant Pathol. 14: 25-29.
Perveen, R., Suleria, H. A., Anjum, F. M., Butt, M. S., Pasha, I., and Ahmad, S. 2015. Tomato, A. S. (Solanum lycopersicum) carotenoids and lycopenes chemistry: Metabolism, absorption, nutrition, and allied health claims- A comprehensive review. Crit. Rev. Food Sci. Nutr. 55: 919-929.
Prabhu, D. M., Quadri, S. R., Cheng, J., Liu, L., Chen, W., Yang, Y., Hozzein, W. N., Lingappa, K., and Li, W. J. 2015. Sinomonas mesophila sp. nov., isolated from ancient fort soil. J. Antibiot (Tokyo). 68: 318-21.
Rønning, H. T., Madslien, E. H., Asp, T.N., and Granum, P. E. 2015. Identification and quantification of lichenysin - a possible source of food poisoning. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 32: 2120-30.
Shah, J., and Klessig, D. F. 1996. Identification of a salicylic acid-responsive element in the promoter of the tobacco pathogenesis-related β-1,3-glucanase gene, PR-2d. Plant J. 10: 1089-1101.
Shih, C. J., Chen, P. Y., Liaw, C. C., Lai, Y. M., and Yang, Y. L. 2014. Bringing microbial interactions to light using imaging mass spectrometry. Nat Prod Rep. 31: 739-55.
Smith, E. F. 1896. A bacterial disease of the tomato, eggplant and Irish potato. U.S. Dept. Agric. Div. Veg. Phys. Path. Bull. 12: 1-26.
Sudhir, A. P., Agarwaal, V. V., Davea, B. R., Patel, D. H., and Subramanian, R. B. 2016. Enhanced catalysis of l-asparaginase from Bacillus licheniformis by a rational redesign. Enzyme Microb. Technol. 86: 1-6.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729.
Thrum, H., Eckardt, K., Bradler, G., Fügner, R., Tonew, E., and Tonew, M. 1975. Streptovirudins, new antibiotics with antibacterial and antiviral activity: I. Culture taxonomy, fermentation and production of streptovirudin complex. J. Antibiot. 28: 514–521.
Tonew, E. M., Tonew, M. S., Indulen, M. K., and Dzeguze, D. R. 1982. Effects of streptovirudin on influenza viruses type A and B: inhibition of the lipid-linked oligosaccharide synthesis of fowl plague virus. Acta. virologica 26: 444-52.
Tooley, P. W., Fry, W. E., and Villarreal Gonzalez, M. J. 1985. Isozyme characterization of sexual and asexual Phytophthora infestans population. J. Hered. 76:431-435.
Tsvetanova, B. C., and Price, N. P. 2001. Liquid chromatography-electrospray mass spectrometry of tunicamycin-type antibiotics. Anal Biochem. 289: 147-56.
US EPA. 2001. Biopesticides registration action document : Bacillus licheniformis Strain SB3086. US Environmental Protection Agency Office of Pesticide Programs. US EPA.
Ward, D. M., Weller, R., and Bateson, M. M.1990. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345: 63-5.
White, T. J., Bruns, T., Lee, S., and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (Eds.), PCR protocols pp. 315-320. Academic Press.
Wu, Y. F., Lin, C. H., Chen, T. M., Huang, Y. F., Chen, S. H., Wang, J. F., and Cheng, A. S. 2010. Ecological survey of brown rot of potato in Dounan, Yunlin. Plant Pathol. Bull. 19: 87. (in Chinese)
Yoshida, K., Schuenemann, V. J., Cano, L. M., Pais, M., Mishra, B., Sharma, R., Lanz, C., Martin, F. N., Kamoun, S., Krause, J., Thines, M., Weigel, D., Burbano, H. A. 2013. The rise and fall of the Phytophthora infestans lineage that triggered the Irish Potato Famine. Elife 2: e00731.
Zhou, Y., Wei, W., Wang, X., and Lai, R. 2009. Proposal of Sinomonas flava gen. nov., sp. nov., and description of Sinomonas atrocyanea comb. nov. to accommodate Arthrobacter atrocyaneus. Int. J. Syst. Evol. Microbiol. 59: 259-63.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊