跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/17 23:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳立於
研究生(外文):Li-Yu Chen
論文名稱:米蛋白之磷酸化與應用於米蛋白磷酸胜肽之製備
論文名稱(外文):Phosphorylation of Rice Protein and its Application on Preparation of Rice Phosphopeptides
指導教授:許輔許輔引用關係
口試委員:葉安義呂廷璋賴喜美丁俞文周志輝
口試日期:2017-10-20
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:127
中文關鍵詞:米蛋白米蛋白水解物磷酸化三偏磷酸鈉雙硫鍵蛋白水溶性溶鈣能力
相關次數:
  • 被引用被引用:0
  • 點閱點閱:268
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究嘗試以磷酸化法將水難溶之米蛋白予以修飾,並探討磷酸化對於米蛋白的低水溶性和其溶鈣能力方面的改變與賦予。米蛋白之磷酸化是將米蛋白分散於pH 11.5、溫度35°C之鹼性溶液中,並和法規認可之食品添加物:三偏磷酸鈉一併反應進行磷酯化之作用,試驗結果顯示20.6%之米蛋白絲胺酸可於STMP之反應下被進行磷酸化。然而,不同於過去其他蛋白質在經由磷酸化修飾後可在蛋白水溶性方面有顯著之提升效果,磷酸化修飾對於米蛋白其低水溶性 (2.5%, pH 7) 之性質並未給予明顯之改善。
分析研究米蛋白分子結構內部之疏水性與雙硫鍵兩大作用力,對於磷酸化修飾提升米蛋白水溶性之效果影響,試驗結果顯示以尿素減緩米蛋白結構內部之疏水性作用力,對於後續磷酸化米蛋白之磷酸化程度 (22.0 %) 與水溶性 (3.6%, pH 7) 方面並無明顯之提升效果。相較之下,預先將米蛋白結構內部之雙硫鍵進行部分之還原斷裂,則可顯著增加後續磷酸化米蛋白之磷酸化程度 (31.3%) 與水溶性 (8.3%, pH 7) ,上述結果顯示分子結構內大量之雙硫鍵應為導致米蛋白在經過磷酸化修飾後水溶性無法提升之原因。
另一方面,相較於對蛋白水溶性無明顯之改善效果,磷酸化修飾可顯著提升米蛋白於磷酸鹽溶液中之溶鈣能力 (由90.4 mg/g提升至147.2 mg/g) 。本研究以同樣具有優異溶鈣能力的酪蛋白磷酸胜肽 (casein phosphopeptide, CPP) 作為仿效對象,初步比較以先磷酸化後水解 (Type 1) 、先水解後磷酸化米蛋白 (Type 2) 兩種製備途徑製備含有米蛋白磷酸胜肽 (rice phosphopeptide, RPP) 之米蛋白水解物。試驗結果顯示Type 1磷酸化米胜肽於低水解度之情況下 (以鹼性蛋白酶處理時水解度為6.7%) 可因磷酸化修飾呈現較好之溶鈣能力,過度將Type 1磷酸化米胜肽進行水解,則可能使其對於鈣離子之螯合結構受到破壞,降低Type 1磷酸化米胜肽之溶鈣能力。對於Type 2磷酸化米胜肽之製備方面,預先以蛋白酶水解米蛋白之後有助於提升後續米蛋白樣品進行磷酸化修飾時之磷酸化程度,例如以水解度3.4%之米胜肽進行磷酸化修飾時,其磷酸化程度 (50.4%) 可明顯高於以未水解之米蛋白進行磷酸化時之磷酸化程度 (20.6) 。而相較於Type 1磷酸化米胜肽僅能於低水解程度之情況下相比於未磷酸化米胜肽呈現較好之溶鈣能力,Type 2磷酸化米胜肽於水解程度較高之條件時,其相比於未磷酸化米胜肽仍可因較高之磷酸化程度而展現較佳之溶鈣能力。然而,Type 2磷酸化米胜肽在製備上被發現有樣品回收不易之缺點,將米蛋白先行水解成米胜肽在將其進行磷酸化修飾,米胜肽容易因分子量較小而於磷酸化反應後之透析脫鹽步驟中與STMP等無機鹽類一併流失,造成後續分析Type 2磷酸化米胜肽其磷酸化程度與溶鈣能力有低估之跡象,此結果顯示Type 2磷酸化米胜肽之製備方式可能不利於應用至工業上之生產,相較之下,先磷酸化後水解米蛋白之方式 (Type 1) 則可由於樣品流失量小,在工業製程上有操作簡易且可從中進一步精緻純化出具良好溶鈣能力之米蛋白磷酸胜肽之優點。
本研究中應證米蛋白可經由磷酸化修飾賦予更多磷酸基團,且對於磷酸化米蛋白亦表現出更好的鈣離子螯合能力而言,發現其具有作為原料製得類似酪蛋白磷酸胜肽之應用潛力。基於目前產業上已有相對較成熟之米蛋白生產製程,實際從製程中導入磷酸化步驟在操作上並無太大之困難,因此利用磷酸化修飾在未來將可望製得有別於一般缺乏可利用功能特性之米蛋白配料,進一步拓展米蛋白在食品產業上之應用價值。
The present study tried to phosphorylate rice protein (RP), a known insoluble food ingredient, and to improve its solubility and calcium-solubilizing capacity (CSC). RP was allowed to react with an approved non-toxic food additive; sodium trimetaphosphate (STMP) in an alkaline aqueous solution (pH 11.5, 35°C). The results indicated that 20.6% of the RP seryl residues were phosphorylated. Interestingly, RP did not show a considerable increase in solubility (2.5%, pH 7) after phosphorylation as compared to those studies that have confirmed the protein solubility improvement via chemical phosphorylation. The involvement of hydrophobic interactions and disulfide bonds in phosphorylated RP solubility was further evaluated. The phosphorylation of RP in the presence of urea as a chaotropic agent for weakening the hydrophobic effect resulted in 22.0% phosphoseryl residues but still did not increase RP solubility. The reduction of RP disulfide bonds prior to phosphorylation resulted in 31.3% phosphoseryl residues and increased RP solubility to 8.3% at pH 7, indicating that disulfide bonds within RP could be responsible for the failure to increase its solubility after phosphorylation.
On the other hand, it was found that the phosphorylation could enhance the CSC of RP from 90.4 mg/g to 147.2 mg/g. To follow the example of casein phosphopeptide (CPP), a hydrolysate that features an extraordinary CSC, the present study has demonstrated two modification procedures for the preparation of rice phosphopeptides (RPP) contained phosphorylated rice protein hydrolysates (PRPH), which included chemical phosphorylation followed by the proteolysis of RP (Type 1 PRPH) or inversely the procedure of proteolysis before the phosphorylation of RP (Type 2 PRPH). In terms of Type 1 PRPH, the results showed that the superior CSC of Type 1 PRPH could be exhibited to be below the range of the degree of hydrolysis (DH) after proteolysis (e.g., DH below 6.7% for alcalase treatment). The phosphorylated chelating structure of Type 1 PRPH might be interrupted by excessive hydrolysis and caused a decrease in its CSC. In the case of Type 2 PRPH, pre-hydrolysis of RP with alcalase prior to phosphorylation consequently introduced more phosphoryl residues (e.g., 50.4% at a DH of 3.4%) compared to that of Type 1 PRPH (20.6%). Type 2 PRPH could exhibit a superior CSC at a higher DH, whereas the Type 1 PRPH only showed a better CSC than that of native RP hydrolysates at a DH below 6.7%. However, the pre-hydrolysis of RP was found to add difficulty to sample recovery in Type 2 PRPH preparation process. The low MW peptides of Type 2 PRPH could be easily lost during the desalting procedure after phosphorylation. Therefore, considering the economics and ease of operation, the pre-phosphorylation-post-hydrolysis process (Type 1) might be the better procedure for preparing CSC-fortified rice protein (RP) peptides.
In conclusion, the present study has verified that the chemical phosphorylation could introduce more negatively charged phosphate groups and thus enhance the CSC of RP. These findings have shown the potential use of RP for preparing the CPP-like bioactive peptides. The CSC-fortified RP might be utilized as promising calcium-absorption enhancers and bioactive agents in future functional food ingredients.
目錄

口試委員會審定書 i
誌謝 ii
摘要 iii
英文摘要 v
目錄 viii
圖目錄 xii
表目錄 xvi
名詞縮寫表 xvii
第一章 前言 1
第一節 研究背景 1
第二節 米蛋白加工與綜合利用 3
2.1 米蛋白的應用潛力與價值 3
2.2 米蛋白的組成與分佈 4
2.3 米蛋白的分離提取 5
2.4 米蛋白的功能性與應用現況 7
第三節 蛋白質之磷酸化修飾 9
第二章 研究動機與目的 13
第三章 材料與方法 15
第一節 磷酸化米蛋白之製備 15
1.1 米蛋白之分離純化 16
1.2 米蛋白之磷酸化修飾 16
第二節 蛋白質之酵素性水解 17
第三節 蛋白質之水解程度測定 18
第四節 磷酸化米胜肽之製備 20
第五節 蛋白質樣品中之磷含量測定 20
第六節 米蛋白磷酸化反應中之焦磷酸鹽生成量測定 22
第七節 磷酸化程度測定 23
第八節 SDS膠體電泳分析 23
第九節 雙向電泳分析 26
第十節 蛋白質序列質譜分析 28
10.1 樣品消化分解 29
10.2 質譜分析 30
第十一節 蛋白質水溶性測定 32
第十二節 蛋白質溶鈣能力測定 33
第十三節 蛋白質表面疏水性測定 35
第十四節 蛋白質雙硫鍵含量測定 36
第十五節 粒徑排阻層析 39
第十六節 統計分析 40
第四章 結果 41
第一節 米蛋白之製備 41
第二節 米蛋白之磷酸化修飾 41
2.1 米蛋白樣品中的磷增加量 41
2.2 米蛋白與STMP反應時溶液中焦磷酸鹽的生成量 42
2.3 磷酸化米蛋白的等電點偏移現象 42
2.4 磷酸化米蛋白序列分析 43
2.5 磷酸化米蛋白之磷酸化程度 43
第三節 磷酸化修飾對於米蛋白水溶性之提升性 44
3.1 磷酸化米蛋白之水溶性 44
3.2 米蛋白分子間的疏水性作用力,對於磷酸化修飾提升米蛋白水溶性之效果影響 44
3.3 米蛋白分子間的雙硫鍵作用力,對於磷酸化修飾提升米蛋白水溶性之效果影響 46
第四節 磷酸化修飾對於米蛋白溶鈣能力之提升性與磷酸化米蛋白水解物之製備 48
4.1 磷酸化米蛋白之溶鈣能力 48
4.2 蛋白酶對於磷酸化米蛋白之水解效率 48
4.3 以先磷酸化後水解米蛋白之方式,所得之磷酸化米胜肽其溶鈣能力的表現 49
4.4 以先磷酸化後水解米蛋白之方式,所得之磷酸化米胜肽其分子量分布 50
4.5 以先水解後磷酸化米蛋白之方式,所得之磷酸化米胜肽其溶鈣能力的表現 50
4.6 以先水解後磷酸化米蛋白之方式,所得之磷酸化米胜肽其樣品回收率分析 51
第五章 討論 53
第一節 米蛋白之磷酸化修飾 53
1.1 米蛋白之磷酸化反應條件 53
1.2 磷酸化米蛋白之製備驗證 54
1.3 磷酸化米蛋白之胺基酸組成與磷酸化程度 56
第二節 磷酸化修飾對於米蛋白水溶性之提升性 58
2.1 磷酸化米蛋白之水溶性 58
2.2 米蛋白分子間的疏水性作用力,對於磷酸化修飾提升米蛋白水溶性之效果影響 60
2.3 米蛋白分子間的雙硫鍵作用力,對於磷酸化修飾提升米蛋白水溶性之效果影響 63
第三節 磷酸化修飾對於米蛋白溶鈣能力之提升性 66
3.1 磷酸化米蛋白之溶鈣能力 66
3.2 蛋白酶對於磷酸化米蛋白之水解效率 67
3.3 磷酸化米蛋白水解物之溶鈣能力 69
3.3.1 以先磷酸化後水解米蛋白之方式,所得之磷酸化米蛋白水解物於不同水解程度下之溶鈣能力 69
3.3.2 以先水解後磷酸化米蛋白之方式,所得之磷酸化米蛋白水解物於不同水解程度下之溶鈣能力 71
3.3 磷酸化米蛋白水解物之未來應用性 73
第六章 結論 76
參考文獻 78
王英誌 (2017) 。還原劑與界面活性劑於提升米蛋白功能性之應用。國立臺灣大學生物資源暨農學院園藝暨景觀學研究所碩士論文。台北。
Adamson, N. J. 1995. Characterization of casein phosphopeptides in: School of Dental Science. The University of Melbourne. .
Adamson, N. J. and Reynolds, E. C. 1995. Characterization of tryptic casein phosphopeptides prepared under industrially relevant conditions. Biotechnol. Bioeng. 45:196-204.
Adamson, N. J. and Reynolds, E. C. 1997. Relationship between degree of casein hydrolysis and phosphopeptide release. J. Dairy Res. 64:505-514.
Adebiyi, A. P., Adebiyi, A. O., Hasegawa, Y., Ogawa, T. and Muramoto, K. 2009. Isolation and characterization of protein fractions from deoiled rice bran. Eur. Food Res. Technol. 228:391-401.
Al Batayneh, O. B. 2009. The clinical applications of Tooth MousseTM and CPP-ACP products in caries prevention: evidence- based recommendations. Smile Dent. J. 4:8-12.
Alder-Nissen. 1986. Enzymic Hydrolysis of Food Proteins. Elsevier Applied Science.: London.
Amagliani, L., O''Regan, J., Kelly, A. L. and O''Mahony, J. A. 2017. The composition, extraction, functionality and applications of rice proteins: A review. Trends Food Sci. Tech. 64:1-12.
Anderson, A., Hettiarachchy, N. and Ju, Z. Y. 2001. Physicochemical properties of pronase-treated rice glutelin. J. Am. Oil Chem. Soc. 78:1.
Aoki, T. 1989. Incorporation of individual casein constituents into casein aggregates cross-linked by colloidal calcium phosphate in artificial casein micelles. J. Dairy Res. 56:613-618.
Aoki, T., Nakano, T., Iwashita, T., Sugimoto, Y., Ibraham, H. R., Toba, Y., Aoe, S. and Nakajima, I. 1998. Preparation and characterization of micellar calcium phosphate-casein phosphopeptide complex. J. Nutr. Sci. Vitaminol. 44:447-456.
Atichokudomchai, N. and Varavinit, S. 2003. Characterization and utilization of acid-modified cross-linked Tapioca starch in pharmaceutical tablets. Carbohydr. Polym. 53:263-270.
Bandyopadhyay, K., Misra, G. and Ghosh, S. 2008. Preparation and characterisation of protein hydrolysates from indian defatted rice bran meal. J. Oleo. Sci. 57:47-52.
Bao, X. L., Lv, Y., Yang, B. C., Ren, C. G. and Guo, S. T. 2008. A study of the soluble complexes formed during calcium binding by soybean protein hydrolysates. J. Food Sci. 73:C117-C121.
Bean, M. M. and Nishita, K. D. 1985. Rice flours for baking. Pages 539-556 in: Rice: Chemistry and Technology. B. O. Juliano, ed. AACC International St. Paul, Minn.
Beveridge, T., Toma, S. J. and Nakai, S. 1974. Determination of sh- and ss-groups in some food proteins using ellman''s reagent. J. Food Sci. 39:49-51.
Bingham, E. W. 1976. Modification of casein by phosphatases and protein kinases. J. Agric. Food Chem. 24:1094-1099.
Cao, X., Wen, H., Li, C. and Gu, Z. 2009. Differences in functional properties and biochemical characteristics of congenetic rice proteins. J. Cereal Sci. 50:184-189.
Cardamone, M. and Puri, N. K. 1992. Spectrofluorimetric assessment of the surface hydrophobicity of proteins. Biochem. J. 282:589-593.
Champagne, E. T., Wood, D. F., Juliano, B. O. and Bechtel, D. B. 2004. The rice grain and its gross composition. Pages 77-107 in: Rice: Chemistry and Technology. American Association of Cereal Chemists, Inc.: St. Paul, Minn.
Chandi, G. K. and Sogi, D. S. 2007. Functional properties of rice bran protein concentrates. J. Food Eng. 79:592-597.
Chen, L. and Houston, D. F. 1970. Solubilization and recovery of protein from defatted rice bran. Cereal Chem. 47:72-79.
Chen, P. S., Toribara, T. Y. and Warner, H. 1956. Microdetermination of phosphorus. Anal. Chem. 28:1756-1758.
Childs, N. W. 2004. Production and utilization of rice. Pages 1-23 in: Rice: Chemistry and Technology. American Association of Cereal Chemists, Inc.: St. Paul, Minn.
Cross, K. J., Huq, N. L., Palamara, J. E., Perich, J. W. and Reynolds, E. C. 2005. Physicochemical characterization of casein phosphopeptide-amorphous calcium phosphate nanocomplexes. J. Biol. Chem. 280:15362-15369.
Damodaran, S. 1994. Structure-fuction relationship of food proteins. Pages 1-37 in: Protein Functionality In Food Systems. N. S. Hettiarachchy and G. R. Ziegler, eds. Marcel Dekker, Inc.: New York.
Damodaran, S. 1997. Protein-stabilized foams and emulsions. Pages 54-66 in: Food proteins and their applications. S. Damodaran, ed. CRC Press.: New York.
De Groot, A. P. and Slump, P. 1969. Effects of severe alkali treatment of proteins on amino acid composition and nutritive value. J. Nutr. 98:45-56.
Doucet, D., Otter, D. E., Gauthier, S. F. and Foegeding, E. A. 2003. Enzyme-Induced gelation of extensively hydrolyzed whey proteins by alcalase:  peptide identification and determination of enzyme specificity. J. Agric. Food. Chem. 51:6300-6308.
Eggum, B. O. 1979. The nutritional value of rice in comparison with other cereals. Pages 91-111 in: Proceedings of workshop on chemical aspects of rice grain quality. The Philippines and IRRI.: Los Baños, Laguna.
Ellegård, K. H., Gammelgård-Larsen, C., Sørensen, E. S. and Fedosov, S. 1999. Process scale chromatographic isolation, characterization and identification of tryptic bioactive casein phosphopeptides. Int. Dairy J. 9:639-652.
Ellinger, R. H. 1972. Phosphates in food in: Handbook of food additives 2nd edn. T. E. Furia, ed. CRC Press: Palo Alto, California.
Enomoto, H., Li, C. P., Morizane, K., Ibrahim, H. R., Sugimoto, Y., Ohki, S., Ohtomo, H. and Aoki, T. 2008. Improvement of functional properties of bovine serum albumin through phosphorylation by dry-heating in the presence of pyrophosphate. J. Food Sci. 73:C84-C91.
Fabian, C. and Ju, Y. H. 2011. A Review on Rice Bran Protein: Its Properties and Extraction Methods. Crit. Rev. Food Sci. Nutr. 51:816-827.
FAOSTAT. 2015. FAOSTAT Database. Rome: Food and Agricultural Organization.
Feeney, R. E. and Whitaker, J. R. 1977. Food Proteins: Improvement Through Chemical and Enzymatic Modification : Symposium. American Chemical Society: Washington, D.C.
Fiocchi, A., Travaini, M., D''Auria, E., Banderali, G., Bernardo, L. and Riva, E. 2003. Tolerance to a rice hydrolysate formula in children allergic to cow''s milk and soy. Clin. Exp. Allergy 33:1576-1580.
Flaschka, H. A., Baenard, A. J. and Sturrock, D. E. 1969. Page 142 in: Quantitative analytical chemistry, vol. II. Barnes and Noble Inc.: New York.
Gao, F., Li, D., Bi, C.-h., Mao, Z.-h. and Adhikari, B. 2014. Preparation and characterization of starch crosslinked with sodium trimetaphosphate and hydrolyzed by enzymes. Carbohydr. Polym. 103:310-318.
Goulas, A., Triplett, E. L. and Taborsky, G. 1996. Oligophosphopeptides of varied structural complexity derived from the egg phosphoprotein, phosvitin. J. Protein Chem. 15:1-9.
Gregory D. Miller, Judith K. Jarvis and McBean, L. D. 2006. Contribution of dairy foods to health throughout the life cycle. Pages 339-399 in: Handbook of Dairy Foods and Nutrition, Third Edition. J. K. J. a. L. D. M. Gregory D. Miller, ed. CRC Press: New York.
Gu, L. S., Kim, J., Kim, Y. K., Liu, Y., Dickens, S. H., Pashley, D. H., Ling, J. Q. and Tay, F. R. 2010. A chemical phosphorylation-inspired design for Type I collagen biomimetic remineralization. Dent Mater. 26:1077-1089.
Guo, X., Zhang, J., Ma, Y. and Tian, S. 2013. Optimization of limited hydrolysis of proteins in rice residue and characterization of the functional properties of the products. J. Food Process Preserv. 37:245-253.
Hamada, J. S. 1997. Characterization of protein fractions of rice bran to devise effective methods of protein solubilization. Cereal Chem. 74:662-668.
Hamada, J. S. 1999. Use of proteases to enhance solubilization of rice bran proteins. J. Food Biochem. 23:307-321.
Hamada, J. S. 2000. Characterization and functional properties of rice bran proteins modified by commercial exoproteases and endoproteases. J. Food Sci. 65:305-310.
Hayakawa, S. and Nakai, S. 1985. Relationships of hydrophobicity and net charge to the solubility of milk and soy Proteins. J. Food Sci. 50:486-491.
Hayakawa, S., Suzuki, H. and Suzuki, T. 1987. Radial distribution of amino acids in the milled rice kernel. J. Agric. Food. Chem. 35:607-610.
Hayashi, Y., Li, C. P., Enomoto, H., Ibrahim, H. R., Sugimoto, Y. and Aoki*, T. 2008. Improvement of functional properties of ovotransferrin by phosphorylation through dry-heating in the presence of pyrophosphate. Asian-australas. J. Anim. Sci. 21:596-602.
Helm, R. M. and Burks, A. W. 1996. Hypoallergenicity of rice protein. Cereal Food World 41:839-843.
Hettiarachchy, N., Kannan, A., Schäfer, C. and Wagner, G. 2013. Gelling of plant based proteins. Pages 221-245 in: Product Design and Engineering. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim.
Hirotsuka, M., Taniguchi, H., Narita, H. and Kito, M. 1984. Functionality and Digestibility of a Highly Phosphorylated Soybean Protein. Agric. Biol. Chem. 48:93-100.
Holt, C., Wahlgren, M. N. and Drakenbreg, T. 1996. Ability of a β-casein phosphopeptide to modulate the precipitation of calcium phosphate by forming amorphous dicalcium phosphate nanoclusters. Biochem. J. 314:1035-1039.
Hoogenkamp, H., Kumagai, H. and Wanasundara, J. P. D. 2017. Rice protein and rice protein products. Pages 47-65 in: Sustainable Protein Sources. Academic Press: San Diego.
Hou, F., Ding, W., Qu, W., Oladejo, A. O., Xiong, F., Zhang, W., He, R. and Ma, H. 2017. Alkali solution extraction of rice residue protein isolates: Influence of alkali concentration on protein functional, structural properties and lysinoalanine formation. Food Chem. 218:207-215.
Jackman, R. L. and Yada, R. Y. 1988. Functional properties of whey-potato protein composite blends in a model system. J. Food Sci. 53:1427-1432.
Jiang, B. and Mine, Y. 2001. Phosphopeptides derived from hen egg yolk phosvitin: effect of molecular size on the calcium-binding properties. Biosci. Biotechnol. Biochem. 65:1187-1190.
Jiang, J., Xiong, Y. L. and Chen, J. 2010. pH Shifting alters solubility characteristics and thermal stability of soy protein isolate and its globulin fractions in different ph, salt concentration, and temperature conditions. J. Agric. Food Chem. 58:8035-8042.
Ju, Z. Y., Hettiarachchy, N. S. and Rath, N. 2001. Extraction, denaturation and hydrophobic Properties of Rice Flour Proteins. J. Food Sci. 66:229-232.
Juliano, B. O. 2007. Rice Chemistry & Quality. Manila, Philippines: Philippine Rice Research Institute.: Manila.
Juliano, B. O. and Bechtel, D. B. 1985. The rice grain and its gross composition. Pages 17-57 in: Rice: Chemistry and Technology. B. O. Juliano, ed. American Association of Cereal Chemists (USA). : St. Paul, Minn.
Kannan, A., Hettiarachchy, N. S., Lay, J. O. and Liyanage, R. 2010. Human cancer cell proliferation inhibition by a pentapeptide isolated and characterized from rice bran. Peptides 31:1629-1634.
Katsube-Tanaka, T., Duldulao, J. B. A., Kimura, Y., Iida, S., Yamaguchi, T., Nakano, J. and Utsumi, S. 2004. The two subfamilies of rice glutelin differ in both primary and higher-order structures. Biochim. Biophys. Acta, Proteins Proteomics 1699:95-102.
Khan, M. A. S., Babiker, E. f. E., Azakami, H. and Kato, A. 1999. Molecular mechanism of the excellent emulsifying properties of phosvitin−galactomannan conjugate. J. Agric. Food Chem. 47:2262-2266.
Kilara, A. and Panyam, D. 2003. Peptides from milk proteins and their properties. Crit. Rev. Food Sci. Nutr. 43:607-633.
Kinsella, J. E. and Melachouris, N. 1976. Functional properties of proteins in foods: A survey. Crit. Rev. Food Sci. Nutr. 7:219-280.
Kitazawa, H., Harata, T., Uemura, J., Saito, T., Kaneko, T. and Itoh, T. 1998. Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Int. J. Food Microbiol. 40:169-175.
Kånge, R., Selditz, U., Granberg, M., Lindberg, U., Ekstrand, G., Ek, B. and Gustafsson, M. 2005. Comparison of different IMAC techniques used for enrichment of phosphorylated peptides. J. Biomol. Tech. 16:91-103.
Korhonen, H. and Pihlanto, A. 2006. Bioactive peptides: production and functionality. Int. Dairy J. 16:945-960.
Krishnan, H. B. and Jerry, A. W. 1995. Morphometric analysis of rice seed protein bodies: implication for a significant contribution of prolamine to the total protein content of rice endosperm. Plant Physiol. 109:1491-1495.
Krishnan, H. B., White, J. A. and Pueppke, S. G. 1992. Characterization and localization of rice (Oryza sativa L.) seed globulins. Plant Sci. 81:1-11.
Kristo, E. and Corredig, M. 2014. Functional properties of food proteins. Pages 47-73 in: Applied Food Protein Chemistry. John Wiley & Sons, Ltd: New Jersey.
Kwong, W. and Kitts, D. 2003. Calcium bioavailability of dairy components in: Handbook of Functional Dairy Products. C. Shortt and J. O''Brien, eds. CRC Press.
Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685.
Lee, S. H., Yang, J. I., Hong, S. M., Hahm, D. H., Lee, S. Y., Kim, I. H. and Choi, S. Y. 2005. Phosphorylation of peptides derived from isolated soybean protein: Effects on calcium binding, solubility and influx into Caco-2 cells. BioFactors 23:121-128.
Li, C. P., Chen, D., Peng, J., Enomoto, H., Hayashi, Y., Li, C., Ou, L. and Aoki, T. 2010. Improvement of functional properties of whey soy protein phosphorylated by dry-heating in the presence of pyrophosphate. LWT Food Sci. Technol. 43:919-925.
Li, C. P., Enomoto, H., Ohki, S., Ohtomo, H. and Aoki, T. 2005. Improvement of functional properties of whey protein isolate through glycation and phosphorylation by dry heating. J. Dairy Sci. 88:4137-4145.
Li, G. H., Qu, M. R., Wan, J. Z. and You, J. M. 2007. Antihypertensive effect of rice protein hydrolysate with in vitro angiotensin I-converting enzyme inhibitory activity in spontaneously hypertensive rats. Asia Pac. J. Clin. Nutr. 16:275-280.
Li, X., Xiong, H., Yang, K., Peng, D., Peng, H. and Zhao, Q. 2012. Optimization of the biological processing of rice dregs into nutritional peptides with the aid of trypsin. J. Food Sci. Technol. 49:537-546.
Lu, C. L. and Baker, R. C. 1986. Characteristics of egg yolk phosvitin as an antioxidant for inhibiting metal-catalyzed phospholipid oxidations. Poult Sci. 65:2065-2070.
Lv, Y., Bao, X. L., Yang, B. C., Ren, C. G. and Guo, S. T. 2008. Effect of soluble soybean protein hydrolysate-calcium complexes on calcium uptake by caco-2 cells. J. Food Sci. 73:H168-H173.
Matheis, G. 1991. Phosphorylation of food proteins with phosphorus oxychloride—Improvement of functional and nutritional properties: A review. Food Chem. 39:13-26.
Matheis, G., Penner, M. H., Feeney, R. E. and Whitaker, J. R. 1983. Phosphorylation of casein and lysozyme by phosphorus oxychloride. J. Agric. Food Chem. 31:379-387.
Matheis, G. and Whitaker, J. R. 1984. Chemical phosphorylation of food proteins: an overview and a prospectus. J. Agric. Food Chem. 32:699-705.
McMahon, D. J. and Oommen, B. S. 2008. Supramolecular structure of the casein micelle. J. Dairy Sci. 91:1709-1721.
Meisel, H. 1997. Biochemical properties of bioactive peptides derived from milk proteins: Potential nutraceuticals for food and pharmaceutical applications. Livest. Prod. Sci. 50:125-138.
Meisel, H., Meisel, H., Fairweather-Tait, S., FitzGerald, R. J., Hartmann, R., Lane, C. N., McDonagh, D., Teucher, B. and Wal, J. M. 2007. Detection of caseinophosphopeptides in the distal ileostomy fluid of human subjects. Br. J. Nutr. 89:351-358.
Mellander, O. 1950. The physiological importance of the casein phosphopeptide calcium salts. II. Peroral calcium dosage of infants. Some aspects of the pathogenesis of rickets. Acta Soc. Bot. Pol. 55:247-257.
Miedzianka, J. and Pęksa, A. 2013. Effect of pH on phosphorylation of potato protein isolate. Food Chem. 138:2321-2326.
Mine, Y. 2014. Egg Proteins. Pages 459-490 in: Applied Food Protein Chemistry. John Wiley & Sons, Ltd: New Jersey.
Miquel, E., Alegría, A., Barberá, R. and Farré, R. 2005. Speciation analysis of calcium, iron, and zinc in casein phosphopeptide fractions from toddler milk-based formula by anion exchange and reversed-phase high-performance liquid chromatography–mass spectrometry/flame atomic-absorption spectroscopy. Anal. Bioanal. Chem. 381:1082-1088.
Morita, T. and Kiriyama, S. 1993. Mass production method for rice protein isolate and nutritional evaluation. J. Food Sci. 58:1393-1396.
Nakai, S. 1983. Structure-function relationships of food proteins: with an emphasis on the importance of protein hydrophobicity. J. Agric. Food Chem. 31:676-683.
Nakai, S. and Powrie, W. D. 1981. Modification of proteins for functional and nutritional improvements. Page 217 in: Cereals: A Renewable Resource. Theory and Practice. Y. Pomeranz and L. Munck, eds. American Association of Cereal Chemists: St. Paul, Minn.
Nielsen, P. M., Petersen, D. and Dambmann, C. 2001. Improved method for determining food protein degree of hydrolysis. J. Food Sci. 66:642-646.
Nielsen, S. S. 2010. Complexometric determination of calcium. Pages 61-67 in: Food analysis laboratory manual. S. S. Nielsen, ed. Springer: Boston.
Ogawa, M., Kumamaru, T., Satoh, H., Iwata, N., Omura, T., Kasai, Z. and Tanaka, K. 1987. Purification of protein body-I of rice seed and its polypeptide composition. Plant Cell Physiol. 28:1517-1527.
Ogawa, M., Kumamaru, T., Satoh, H., Omura, T., Park, T., Shintaku, K. and Baba, K. 1989. Mutants for rice storage proteins - 2. Isolation and characterization of protein bodies from rice mutants. Theor. Appl. Genet. 78:305-310.
Ono, T., Takagi, Y., Kunishi and Isao. 1998. Casein phosphopeptides from casein micelles by successive digestion with pepsin and trypsin. Biosci. Biotechnol. Biochem. 62:16-21.
Orthoefer, F. T. and Eastman, J. 2004. Rice bran and oil. Pages 569-593 in: Rice: Chemistry and Technology. American Association of Cereal Chemists, Inc.: St. Paul, Minn.
Osborne, T. B. 1924. The vegetable proteins in: Monographs on biochemistry. Longmans, Green and Co.: London.
Otani, H., Kitamura, H., Park, M., Kihara, Y., Oshida, T., Kusuhara, S. and Sawada, K. 2000. Enhancement of intestinal lgA levels in piglets by oral administration of a commercially available casein phosphopeptide preparation. Milchwissenschaft 55:429-432.
Otterburn, M. S. 1989. Protein crosslinking in: Protein quality and the effects of processing. J. W. F. R. D. Phillips, ed. Marcel Dekker, Inc.: New York.
Paraman, I., Hettiarachchy, N. S., Schaefer, C. and Beck, M. I. 2006. Physicochemical properties of rice endosperm proteins extracted by chemical and enzymatic methods. Cereal Chem. 83:663-667.
Paraman, I., Hettiarachchy, N. S., Schaefer, C. and Beck, M. I. 2007. Hydrophobicity, solubility, and emulsifying properties of enzyme-modified rice endosperm protein. Cereal Chem. 84:343-349.
Pinciroli, M., Vidal, A. A., Añón, M. C. and Martínez, E. N. 2009. Comparison between protein functional properties of two rice cultivars. Food Sci. Technol. 42:1605-1610.
Polyansky, A. A. and Zagrovic, B. 2012. Protein electrostatic properties predefining the level of surface hydrophobicity change upon phosphorylation. J. Phys. Chem. Lett. 3:973-976.
Powell, P. and Timms, P. L. 1974. Non-metal oxides, sulphides and their derivatives. Pages 74-147 in: The Chemistry of the Non-Metals. P. Powell and P. L. Timms, eds. Springer: Dordrecht.
Ravi, V. K., Goel, M., Kotamarthi, H. C., Ainavarapu, S. R. K. and Swaminathan, R. 2014. Preventing disulfide bond formation weakens non-covalent forces among lysozyme aggregates. PLoS One 9:e87012.
Reche, M., Pascual, C., Fiandor, A., Polanco, I., Rivero-Urgell, M., Chifre, R., Johnston, S. and Martín-Esteban, M. 2010. The effect of a partially hydrolysed formula based on rice protein in the treatment of infants with cow’s milk protein allergy. J. Allergy Clin. Immunol. 21:577-585.
Rombouts, I., Lagrain, B., Brijs, K. and Delcour, J. A. 2010. β-Elimination reactions and formation of covalent cross-links in gliadin during heating at alkaline pH. J. Cereal Sci. 52:362-367.
Rombouts, I., Lagrain, B., Brijs, K. and Delcour, J. A. 2012. Cross-linking of wheat gluten proteins during production of hard pretzels. Amino Acids 42:2429-2438.
Romero, A., Beaumal, V., David-Briand, E., Cordobes, F., Guerrero, A. and Anton, M. 2012. Interfacial and emulsifying behaviour of rice protein concentrate. Food Hydrocoll. 29:1-8.
Romero, M. V. 2014. Rice proteins. Pages 305-321 in: Applied Food Protein Chemistry. John Wiley & Sons, Ltd: New Jersey.
Ropp, R. C. 2013. Group 15 (N, P, As, Sb and Bi) alkaline earth compounds. Pages 199-350 in: Encyclopedia of the Alkaline Earth Compounds. Elsevier: Amsterdam.
Samaraweera, H., Moon, S. H., Lee, E. J., Grant, J., Fouks, J., Choi, I., Suh, J. W. and Ahn, D. U. 2014. Characterisation of phosvitin phosphopeptides using MALDI-TOF mass spectrometry. Food Chem. 165:98-103.
Sato, R., Shindo, M., Gunshin, H., Noguchi, T. and Naito, H. 1991. Characterization of phosphopeptide derived from bovine β-casein: an inhibitor to intra-intestinal precipitation of calcium phosphate. Biochim. Biophys. Acta 1077:413-415.
Saunders, R. M. 1990. The properties of rice bran as a foodstuff. Cereal Foods World 35:632, 634-636.
Shahidi, F. and Li, Q. 2014. Biologically active peptides from foods. Pages 75-98 in: Applied Food Protein Chemistry. John Wiley & Sons, Ltd: New Jersey.
Shahidi, F. and Zhong, Y. 2008. Bioactive peptides. J. AOAC Int. 91:914-931.
Shih, F. F. 2003. An update on the processing of high-protein rice products. Nahrung 47:420-424.
Shih, F. F. 2004. Rice proteins. Pages 143-162 in: Rice: Chemistry and Technology. American Association of Cereal Chemists, Inc.: St. Paul, Minn.
Shridhar, K. S. 2012. Protein solubility and functionality. Pages 95-124 in: Food Proteins and Peptides. Navam S. Hettiarachchy, Kenji Sato, Maurice R. Marshall and A. Kannan, eds. CRC Press: New York.
Singh, J., Kaur, L. and McCarthy, O. J. 2009. Potato starch and its modification. Pages 273-318 in: Advances in Potato Chemistry and Technology. Academic Press: San Diego.
Stensballe, A., Andersen, S. and Jensen, O. N. 2001. Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass spectrometry analysis. Proteomics 1.
Sugimoto, T., Tanaka, K. and Kasai, Z. 1986. Molecular species in the protein body II (PB-II) of developing rice endosperm. Agric. Biol. Chem. 50:3031-3035.
Sung, H. Y., Chen, H. J., Liu, T. Y. and Su, J. C. 1983. Improvement of the functionalities of soy protein isolate through chemical phosphorylation. J. Food Sci. 48:716-721.
Taborsky, G. 1991. On the interaction of phosvitins with ferric ion: Solubility of the Fe(III)-phosphoprotein complex under acidic conditions is a function of the iron/phosphate ratio and the degree of phosvitin phosphorylation. J. Inorg. Biochem. 44:65-77.
Takaiwa, F., Kikuchi, S. and Oono, K. 1986. The structure of rice storage protein glutelin precursor deduced from cDNA. FEBS Letters 206:33-35.
Takaiwa, F., Kikuchi, S. and Oono, K. 1987. A rice glutelin gene family — a major type of glutelin mRNAs can be divided into two classes. Mol. Gen. Genet. 208:15-22.
Takaiwa, F., Ogawa, M. and Okita, T. W. 1999. Rice Glutelins. Pages 401-425 in: Seed Proteins. P. R. Shewry and R. Casey, eds. Springer Netherlands: Dordrecht.
Tavano, O. L. 2013. Protein hydrolysis using proteases: An important tool for food biotechnology. J. Mol. Catal. B: Enzym. 90:1-11.
Tecson, E. M. S., Esmama, B. V., Lontok, L. P. and Juliano, B. O. 1971. Studies on the extraction and composition of rice endosperm glutelin and prolamin. Cereal Chem. 48:168-181.
Ustunol, Z. 2014. Physical, chemical, and processing-induced changes in proteins. Pages 23-46 in: Applied Food Protein Chemistry. John Wiley & Sons, Ltd: New Jersey.
Utsumi, S. 1992. Plant Food Protein Engineering. Adv. Food Nutr. Res. 36:89-208.
Wang, C., Johnson, L. A. and Wilson, L. A. 2003. Calcium coagulation properties of hydrothermally processed soymilk. J. Am. Oil Chem. Soc. 80:1225-1229.
Wang, H., Jiao, F., Gao, F., Lv, Y., Wu, Q., Zhao, Y., Shen, Y., Zhang, Y. and Qian, X. 2017. Titanium (IV) ion-modified covalent organic frameworks for specific enrichment of phosphopeptides. Talanta 166:133-140.
Wang, M., Hettiarachchy, N. S., Qi, M., Burks, W. and Siebenmorgen, T. 1999. Preparation and functional properties of rice bran protein isolate. J. Agric. Food Chem. 47:411-416.
Wang, X. B. and Chi, Y. J. 2012. Microwave-assisted phosphorylation of soybean protein Isolates and their physicochemical properties. Czech J. Food Sci. 30:99-107.
Weingartner, K. E., Nelson, A. I. and Erdman, J. W. 1983. Effects of calcium addition on stability and sensory properties of soy beverage. J. Food Sci. 48:256-257.
West, T. S. and Sykes, A. S. 1960. Analytical applications of diamino-ethane-tetra-acetic acid. British Drug Houses: Poole.
Woo, K. and Seib, P. A. 1997. Cross-linking of wheat starch and hydroxypropylated wheat starch in alkaline slurry with sodium trimetaphosphate. Carbohydr. Polym. 33:263-271.
Wu, W., Cheng, F. M., Liu, Z. H. and Wei, K. S. 2007. Difference of phytic acid content and its relation to four protein composition contents in grains of twenty-nine japonica rice varieties from jiangsu and zhejiang provinces, china. Rice Sci. 14:311-314.
Yamada, E. A. and Sgarbieri, V. C. 2005. Yeast (Saccharomyces cerevisiae) protein concentrate:  preparation, chemical composition, and nutritional and functional properties. J. Agric. Food Chem. 53:3931-3936.
Yang, T., Zhu, H., Zhou, H., Lin, Q., Li, W. and Liu, J. 2012. Rice protein hydrolysate attenuates hydrogen peroxide induced apoptosis of myocardiocytes H9c2 through the Bcl-2/Bax pathway. Food Res. Int. 48:736-741.
Zangi, R., Zhou, R. and Berne, B. J. 2009. Urea’s action on hydrophobic interactions. J. Am. Chem. Soc. 131:1535-1541.
Zayas, J. F. 1997. Solubility of proteins. Pages 6-75 in: Functionality of Proteins in Food. Springer Berlin Heidelberg: Berlin, Heidelberg.
Zhang, M. N., Huang, G. R. and Jiang, J. X. 2012. Effects of chemical modification and molecular weight distribution on iron binding ability of phytate-removal soybean protein isolate hydrolysate. Adv. J. Food Sci. Techno. 4:78-83.
Zhao, Q., Selomulya, C., Xiong, H., Chen, X. D., Ruan, X., Wang, S., Xie, J., Peng, H., Sun, W. and Zhou, Q. 2012a. Comparison of functional and structural properties of native and industrial process-modified proteins from long-grain indica rice. J. Cereal Sci. 56:568-575.
Zhao, Q., Xiong, H., Selomulya, C., Chen, X. D., Zhong, H., Wang, S., Sun, W. and Zhou, Q. 2012b. Enzymatic hydrolysis of rice dreg protein: Effects of enzyme type on the functional properties and antioxidant activities of recovered proteins. Food Chem. 134:1360-1367.
Zheng, L., Ren, J., Su, G., Yang, B. and Zhao, M. 2013. Comparison of in vitro digestion characteristics and antioxidant activity of hot- and cold-pressed peanut meals. Food Chem. 141:4246-4252.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top