跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/21 15:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:韋伯翰
研究生(外文):Po-Han Wei
論文名稱:BCAS2可以調節PSD95並改善在APP轉基因小鼠中所看到類似阿茲海默症的表現型
論文名稱(外文):BCAS2 regulates PSD95 and ameliorates the AD-like phenotype seen in APP transgenic mouse
指導教授:陳小梨陳小梨引用關係
指導教授(外文):Show-Li Chen
口試委員:王培育黃憲松鄭菡若
口試委員(外文):PEI-YU WANGHsien-Sung HuangHan-Juo Cheng
口試日期:2018-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:微生物學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:49
中文關鍵詞:BCAS2條件式基因剃除小鼠(CaMKIIα-CreBCAS2Flox/Flox)PSD95神經退化性疾病阿茲海默症發炎反應補體
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
BCAS2 (Breast carcinoma amplified sequence 2) 是一個26kD的核蛋白且為Prp19/CDC5L complex中的一個核心蛋白質。BCAS2可以調節精原細胞的剪接並維持早期胚胎發育的基因組完整性。它同時也是p53的負調控者並在DNA受到損傷時扮演一個重要的角色。除此之外,它也是個和雄性激素受器有交互作用且對於前列腺癌細胞的生長與存活是不可或缺的;另外在乳癌病患中,低表現量的BCAS2和較高的無復發生存率有關聯。我們實驗室近期的研究發現BCAS2可以調節β-catenin的RNA剪切。透過Cre/loxP的系統在小鼠出生後,專一性的剃除前腦中的BCAS2基因,而這隻轉基因小鼠有著類似腦小症的表現型,無論在前腦的重量上有下降或是透過組織外觀來觀察都得以證實。再者,和WT小鼠相比之下,條件式BCAS2基因剃除鼠有著較短的樹突長度並從學習和記憶的行為學上發現有著認知上的缺失。在一項關於阿茲海默症病患的微陣列研究結果發現BCAS2的下降並認為其屬於阿茲海默症相關的基因。阿茲海默症是一個最為常見的失智症類型也是一種漸進式的神經退化性疾病,它有著許多神經病理學的改變,舉例而言突觸喪失就是其中一個。發炎反應則在許多神經退化性疾病中都有觀察到,一項近期的研究顯示補體因子例如C1q和C3會協同小膠質細胞作用造成早期阿茲海默症疾病鼠的突觸喪失。PSD95是位於突觸後的一個蛋白質,在阿茲海默症疾病鼠中觀察到因為突觸喪失所造成的PSD95量下降。
在我們近期尚未發表的研究結果顯示BCAS2可以結合到PSD95的mRNA上並且調節其選擇性剪接和表現量。我的研究中發現了條件式BCAS2基因剃除鼠在海馬迴中DG的molecular layer有顯著性的PSD95表現下降以及和突觸前的一個蛋白質Synapsin I的共同定位亦有下降的現象。造成這部分的結果是由於先前實驗室學姊發現在同樣這區域有著小膠質細胞增生的現象, BCAS2又是一個p53的負調節者,而p53和小膠質細胞增生又是有關聯的。因此,上述內容更加強化了BCAS2和PSD95之間的關聯。
因此,我們假設BCAS2可能在具有神經保護的效果且其在阿茲海默症中所扮演的角色亦是我們有興趣的。首先,我們測定了5個月大的J20 APP轉基因小鼠中的BCAS2和PSD95蛋白質表現量,並且發現在海馬迴中有著顯著的下降,皮質區則沒有這個趨勢。接著我們生產了帶有BCAS2基因的慢病毒(lentivirus)質體,透過腦立體定位手術將此病毒打入三個半月小鼠的海馬迴的DG區域。一個半月之後,小鼠則會進行三種行為學實驗來評估BCAS2基因治療的效果。和控制組的APP轉基因小鼠相比之下,有進行BCAS2基因治療的APP轉基因老鼠,其在行為學passive avoidance中的記憶力有著顯著的增加,而另外兩項行為學rotarod和Morris water maze則沒有顯著的差異。最後,我們測量了C1q、PSD95以及兩者的共定位表現量來研究BCAS2基因治療可能的機制。我們發現APP/BCAS2小鼠在特定區域中有著PSD95表現量的上升,而這可能是因為會表現BCAS2的慢病毒所造成的效果。總而言之,BCAS2可以調節PSD95並改善在APP轉基因小鼠中所看到類似阿茲海默症的表現型。
Breast carcinoma amplified sequence 2 (BCAS2) is 26 kDa nuclear protein and a member of the core proteins in the Prp19/CDC5L complex. BCAS2 can regulate the splicing in spermatogonia and maintain genome integrity of early embryonic development. It is also a negative regulator of p53 tumor suppressor and plays a role in response to DNA damage. Aside from that, BCAS2 is an androgen receptor (AR)-interacting protein which is necessary for the survival and growth of prostate cancer cells and lower levels of BCAS2 is associated with higher relapse-free survival of breast cancer patients. Our recent study discovered that BCAS2 can regulate β-catenin RNA splicing. By using the Cre/loxP system, we generated CaMKIIα-iCre drived BCAS2 conditional knockout mice. The transgenic mice have a microcephaly-like phenotype, as evidenced by a decreased of forebrain weight and histological appearance. Besides that, shorter dendrite length is found when compared with WT mice and also display cognitive deficits in learning and memory behavior tests. A human Alzheimer''s disease (AD) microarray study showed a down-regulation of BCAS2 and described as an AD-corrlelated genes. Alzheimer''s disease, the most common type of dementia and progressive neurodegenerative disease, has many neuropathological alterations, synapse loss for instance. Inflammation has been seen in many neurodegenerative diseases. A recent study showed complement factors such as C1q and C3 along with microglia will mediate early synapse loss in Alzheimer mouse models. Being a marker at the postsynaptic density, PSD95 is lowered in AD mice due to the loss of synapses.
Recently our unpublished results discovered BCAS2 could bind with PSD95 mRNA and regulate its alternative splicing and expression. In my study, we found a significant lower post- (PSD95) and co-localized synaptic density (with pre-synaptic marker Synapsin I) in the hippocampus dentate gyrus molecular layer in BCAS2 cKO mice. This part of the data can be a result toward the discovery of microgliosis in this region since BCAS2 can negatively regulate p53 expression which is associated with microgliosis. This strengthens the relationship between BCAS2 and PSD95.
Therefore, we hypothesized that BCAS2 might function for neuroprotection and the role of BCAS2 in AD would be interesting for investigation. Firstly, both BCAS2 and PSD95 protein levels were checked in 5-month-old J20 APP mice and found a significant decreased in the hippocampus region but not cortex. We then generated a lentiviral plasmid containing BCAS2 gene. By performing brain stereotaxic surgery, lentivirus was injected into hippocampus dentate gyrus at the age of 3.5-month-old. 1.5 month after virus injection, mice were tested in three behavior tests to evaluate the effect of BCAS2 gene therapy. BCAS2 treatment in APP mice showed a significant improvement in passive avoidance comparing with APP/GFP mice; but not rotarod performance and the Morris water maze test. The levels of C1q, PSD95 and their co-localization were further measured to investigate the possible mechanism of BCAS2 gene therapy. We found a region-specific increase of PSD95 level in the dentate gyrus of APP/BCAS2 mice, which is possibly the effect of the lentiviruses. Collectively, BCAS2 may regulate PSD95 and ameliorate the AD-like phenotype seen in APP transgenic mouse.
口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract v
TABLE OF CONTENT viii
Chapter 1 INTRODUCTION 1
1.1 The discovery of BCAS2 and splicing 1
1.2 BCAS2 and cancer 2
1.3 BCAS2 and neurodegenerative disease 3
1.4 Alzheimer''s disease 4
1.5 Inflammation and neurodegenerative diseases 5
1.6 Postsynaptic density protein 95 (PSD95) 6
1.7 The characterization of BCAS2 cKO mice 8
1.8 Aim of this study 9
Chapter 2 MATERIALS AND METHODS 10
2.1 Mice cohorts 10
2.2 Generation of lentiviral plasmid 10
2.3 Cell culture, transfection, virus production and infection. 11
2.4 Brain Stereotaxic Surgery 12
2.5 Mice behavioral experiments 13
2.6 Tissue preparation 15
2.7 Immunofluorescence assay (IFA) 15
2.8 Western blot analysis 16
2.9 Stereological analysis 17
2.10 Statistical analysis 17
Chapter 3 RESULTS 18
3.1 BCAS2 conditional knockout mice show lower post- and co-localized synaptic density. 18
3.2 Generation of lentivirus encoding BCAS2. 19
3.3 Decreased BCAS2 and PSD95 protein level in 5-month-old APP mice. 20
3.4 BCAS2 lentiviral gene therapy in APP mice increases learning and memory by passive avoidance behavior test. 21
3.5 PSD95 level is increased in specific region of BCAS2 treatment APP mice. 24
3.6 Increased in PSD95 protein expression in APP mice treated with BCAS2. 26
Chapter 4 DISCUSSION 27
REFERENCES 32
FIGURES 38
APPENDIX 47
Ajuh, P., Kuster, B., Panov, K., Zomerdijk, J.C., Mann, M., and Lamond, A.I. (2000). Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry. The EMBO journal 19, 6569-6581.
Aloi, M.S., Su, W., and Garden, G.A. (2015). The p53 Transcriptional Network Influences Microglia Behavior and Neuroinflammation. Critical reviews in immunology 35, 401-415.
Bialas, A.R., Presumey, J., Das, A., van der Poel, C.E., Lapchak, P.H., Mesin, L., Victora, G., Tsokos, G.C., Mawrin, C., Herbst, R., et al. (2017). Microglia-dependent synapse loss in type I interferon-mediated lupus. Nature 546, 539-543.
Blalock, E.M., Geddes, J.W., Chen, K.C., Porter, N.M., Markesbery, W.R., and Landfield, P.W. (2004). Incipient Alzheimer''s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proceedings of the National Academy of Sciences of the United States of America 101, 2173-2178.
Broadhead, M.J., Horrocks, M.H., Zhu, F., Muresan, L., Benavides-Piccione, R., DeFelipe, J., Fricker, D., Kopanitsa, M.V., Duncan, R.R., Klenerman, D., et al. (2016). PSD95 nanoclusters are postsynaptic building blocks in hippocampus circuits. Scientific reports 6, 24626.
Caccamo, A., De Pinto, V., Messina, A., Branca, C., and Oddo, S. (2014). Genetic reduction of mammalian target of rapamycin ameliorates Alzheimer''s disease-like cognitive and pathological deficits by restoring hippocampal gene expression signature. The Journal of neuroscience : the official journal of the Society for Neuroscience 34, 7988-7998.
Chang, W.H., Chen, M.C., and Cheng, I.H. (2015). Antroquinonol Lowers Brain Amyloid-beta Levels and Improves Spatial Learning and Memory in a Transgenic Mouse Model of Alzheimer''s Disease. Scientific reports 5, 15067.
Chapman, E.R. (2008). How does synaptotagmin trigger neurotransmitter release? Annual review of biochemistry 77, 615-641.
Chen, P.H., Lee, C.I., Weng, Y.T., Tarn, W.Y., Tsao, Y.P., Kuo, P.C., Hsu, P.H., Huang, C.W., Huang, C.S., Lee, H.H., et al. (2013). BCAS2 is essential for Drosophila viability and functions in pre-mRNA splicing. Rna 19, 208-218.
Chen, X., Nelson, C.D., Li, X., Winters, C.A., Azzam, R., Sousa, A.A., Leapman, R.D., Gainer, H., Sheng, M., and Reese, T.S. (2011). PSD-95 is required to sustain the molecular organization of the postsynaptic density. The Journal of neuroscience : the official journal of the Society for Neuroscience 31, 6329-6338.
Cheng, I.H., Scearce-Levie, K., Legleiter, J., Palop, J.J., Gerstein, H., Bien-Ly, N., Puolivali, J., Lesne, S., Ashe, K.H., Muchowski, P.J., et al. (2007). Accelerating amyloid-beta fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. The Journal of biological chemistry 282, 23818-23828.
Choquet, D., and Triller, A. (2013). The dynamic synapse. Neuron 80, 691-703.
Chou, M.H., Hsieh, Y.C., Huang, C.W., Chen, P.H., Chan, S.P., Tsao, Y.P., Lee, H.H., Wu, J.T., and Chen, S.L. (2015). BCAS2 Regulates Delta-Notch Signaling Activity through Delta Pre-mRNA Splicing in Drosophila Wing Development. PloS one 10, e0130706.
Cisse, M., Halabisky, B., Harris, J., Devidze, N., Dubal, D.B., Sun, B., Orr, A., Lotz, G., Kim, D.H., Hamto, P., et al. (2011). Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature 469, 47-52.
DeKosky, S.T., and Scheff, S.W. (1990). Synapse loss in frontal cortex biopsies in Alzheimer''s disease: correlation with cognitive severity. Annals of neurology 27, 457-464.
Dickerson, B.C., Bakkour, A., Salat, D.H., Feczko, E., Pacheco, J., Greve, D.N., Grodstein, F., Wright, C.I., Blacker, D., Rosas, H.D., et al. (2009). The cortical signature of Alzheimer''s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cerebral cortex 19, 497-510.
Dickerson, B.C., Stoub, T.R., Shah, R.C., Sperling, R.A., Killiany, R.J., Albert, M.S., Hyman, B.T., Blacker, D., and Detoledo-Morrell, L. (2011). Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults. Neurology 76, 1395-1402.
Dosemeci, A., Makusky, A.J., Jankowska-Stephens, E., Yang, X., Slotta, D.J., and Markey, S.P. (2007). Composition of the synaptic PSD-95 complex. Molecular & cellular proteomics : MCP 6, 1749-1760.
Dubal, D.B., Zhu, L., Sanchez, P.E., Worden, K., Broestl, L., Johnson, E., Ho, K., Yu, G.Q., Kim, D., Betourne, A., et al. (2015). Life extension factor klotho prevents mortality and enhances cognition in hAPP transgenic mice. The Journal of neuroscience : the official journal of the Society for Neuroscience 35, 2358-2371.
Ehrlich, I., Klein, M., Rumpel, S., and Malinow, R. (2007). PSD-95 is required for activity-driven synapse stabilization. Proceedings of the National Academy of Sciences of the United States of America 104, 4176-4181.
Elias, G.M., Funke, L., Stein, V., Grant, S.G., Bredt, D.S., and Nicoll, R.A. (2006). Synapse-specific and developmentally regulated targeting of AMPA receptors by a family of MAGUK scaffolding proteins. Neuron 52, 307-320.
Fitzjohn, S.M., Pickard, L., Duckworth, J.K., Molnar, E., Henley, J.M., Collingridge, G.L., and Noel, J. (2001). An electrophysiological characterisation of long-term potentiation in cultured dissociated hippocampal neurones. Neuropharmacology 41, 693-699.
Heppner, F.L., Ransohoff, R.M., and Becher, B. (2015). Immune attack: the role of inflammation in Alzheimer disease. Nature reviews Neuroscience 16, 358-372.
Hofmann, J.C., Tegha-Dunghu, J., Drager, S., Will, C.L., Luhrmann, R., and Gruss, O.J. (2013). The Prp19 complex directly functions in mitotic spindle assembly. PloS one 8, e74851.
Hong, S., Beja-Glasser, V.F., Nfonoyim, B.M., Frouin, A., Li, S., Ramakrishnan, S., Merry, K.M., Shi, Q., Rosenthal, A., Barres, B.A., et al. (2016). Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712-716.
Huang, C.W., Chen, Y.W., Lin, Y.R., Chen, P.H., Chou, M.H., Lee, L.J., Wang, P.Y., Wu, J.T., Tsao, Y.P., and Chen, S.L. (2016). Conditional Knockout of Breast Carcinoma Amplified Sequence 2 (BCAS2) in Mouse Forebrain Causes Dendritic Malformation via beta-catenin. Scientific reports 6, 34927.
Iqbal, K., Liu, F., Gong, C.X., and Grundke-Iqbal, I. (2010). Tau in Alzheimer disease and related tauopathies. Current Alzheimer research 7, 656-664.
Kawanishi, S., Ohnishi, S., Ma, N., Hiraku, Y., and Murata, M. (2017). Crosstalk between DNA Damage and Inflammation in the Multiple Steps of Carcinogenesis. International journal of molecular sciences 18.
Kim, E., and Sheng, M. (2004). PDZ domain proteins of synapses. Nature reviews Neuroscience 5, 771-781.
Koffie, R.M., Hyman, B.T., and Spires-Jones, T.L. (2011). Alzheimer''s disease: synapses gone cold. Molecular neurodegeneration 6, 63.
Kuo, P.C., Huang, C.W., Lee, C.I., Chang, H.W., Hsieh, S.W., Chung, Y.P., Lee, M.S., Huang, C.S., Tsao, L.P., Tsao, Y.P., et al. (2015). BCAS2 promotes prostate cancer cells proliferation by enhancing AR mRNA transcription and protein stability. British journal of cancer 112, 391-402.
Kuo, P.C., Tsao, Y.P., Chang, H.W., Chen, P.H., Huang, C.W., Lin, S.T., Weng, Y.T., Tsai, T.C., Shieh, S.Y., and Chen, S.L. (2009). Breast cancer amplified sequence 2, a novel negative regulator of the p53 tumor suppressor. Cancer research 69, 8877-8885.
Lang, B., and Zhao, S. (2018). miR-486 functions as a tumor suppressor in esophageal cancer by targeting CDK4/BCAS2. Oncology reports 39, 71-80.
Liao, S., Du, R., Wang, L., Qu, Z., Cui, X., Li, C., Liu, F., Huang, M., Wang, J., Chen, J., et al. (2015). BCAS2 interacts with HSF4 and negatively regulates its protein stability via ubiquitination. The international journal of biochemistry & cell biology 68, 78-86.
Liu, W., Wang, F., Xu, Q., Shi, J., Zhang, X., Lu, X., Zhao, Z.A., Gao, Z., Ma, H., Duan, E., et al. (2017a). BCAS2 is involved in alternative mRNA splicing in spermatogonia and the transition to meiosis. Nature communications 8, 14182.
Liu, Y.L., Chen, W.T., Lin, Y.Y., Lu, P.H., Hsieh, S.L., and Cheng, I.H. (2017b). Amelioration of amyloid-beta-induced deficits by DcR3 in an Alzheimer''s disease model. Molecular neurodegeneration 12, 30.
Lull, M.E., and Block, M.L. (2010). Microglial activation and chronic neurodegeneration. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 7, 354-365.
Luo, C., Jian, C., Liao, Y., Huang, Q., Wu, Y., Liu, X., Zou, D., and Wu, Y. (2017). The role of microglia in multiple sclerosis. Neuropsychiatric disease and treatment 13, 1661-1667.
Maass, N., Rosel, F., Schem, C., Hitomi, J., Jonat, W., and Nagasaki, K. (2002). Amplification of the BCAS2 gene at chromosome 1p13.3-21 in human primary breast cancer. Cancer letters 185, 219-223.
Marechal, A., Li, J.M., Ji, X.Y., Wu, C.S., Yazinski, S.A., Nguyen, H.D., Liu, S., Jimenez, A.E., Jin, J., and Zou, L. (2014). PRP19 transforms into a sensor of RPA-ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry. Molecular cell 53, 235-246.
Miyamoto, A., Wake, H., Moorhouse, A.J., and Nabekura, J. (2013). Microglia and synapse interactions: fine tuning neural circuits and candidate molecules. Frontiers in cellular neuroscience 7, 70.
Mucke, L., Masliah, E., Yu, G.Q., Mallory, M., Rockenstein, E.M., Tatsuno, G., Hu, K., Kholodenko, D., Johnson-Wood, K., and McConlogue, L. (2000). High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. The Journal of neuroscience : the official journal of the Society for Neuroscience 20, 4050-4058.
Nagasaki, K., Maass, N., Manabe, T., Hanzawa, H., Tsukada, T., Kikuchi, K., and Yamaguchi, K. (1999). Identification of a novel gene, DAM1, amplified at chromosome 1p13.3-21 region in human breast cancer cell lines. Cancer letters 140, 219-226.
Nalivaeva, N.N., and Turner, A.J. (2013). The amyloid precursor protein: a biochemical enigma in brain development, function and disease. FEBS letters 587, 2046-2054.
Neubauer, G., King, A., Rappsilber, J., Calvio, C., Watson, M., Ajuh, P., Sleeman, J., Lamond, A., and Mann, M. (1998). Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nature genetics 20, 46-50.
Proctor, D.T., Coulson, E.J., and Dodd, P.R. (2010). Reduction in post-synaptic scaffolding PSD-95 and SAP-102 protein levels in the Alzheimer inferior temporal cortex is correlated with disease pathology. Journal of Alzheimer''s disease : JAD 21, 795-811.
Qi, C., Zhu, Y.T., Chang, J., Yeldandi, A.V., Rao, M.S., and Zhu, Y.J. (2005). Potentiation of estrogen receptor transcriptional activity by breast cancer amplified sequence 2. Biochemical and biophysical research communications 328, 393-398.
Schafer, D.P., Lehrman, E.K., Kautzman, A.G., Koyama, R., Mardinly, A.R., Yamasaki, R., Ransohoff, R.M., Greenberg, M.E., Barres, B.A., and Stevens, B. (2012). Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691-705.
Sengupta, D., Bhargava, D.K., Dixit, A., Sahoo, B.S., Biswas, S., Biswas, G., and Mishra, S.K. (2014). ERRbeta signalling through FST and BCAS2 inhibits cellular proliferation in breast cancer cells. British journal of cancer 110, 2144-2158.
Serrano-Pozo, A., Frosch, M.P., Masliah, E., and Hyman, B.T. (2011). Neuropathological alterations in Alzheimer disease. Cold Spring Harbor perspectives in medicine 1, a006189.
Shao, C.Y., Mirra, S.S., Sait, H.B., Sacktor, T.C., and Sigurdsson, E.M. (2011). Postsynaptic degeneration as revealed by PSD-95 reduction occurs after advanced Abeta and tau pathology in transgenic mouse models of Alzheimer''s disease. Acta neuropathologica 122, 285-292.
Shi, Q., Chowdhury, S., Ma, R., Le, K.X., Hong, S., Caldarone, B.J., Stevens, B., and Lemere, C.A. (2017). Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Science translational medicine 9.
Shiraishi-Yamaguchi, Y., and Furuichi, T. (2007). The Homer family proteins. Genome biology 8, 206.
Stephan, A.H., Barres, B.A., and Stevens, B. (2012). The complement system: an unexpected role in synaptic pruning during development and disease. Annual review of neuroscience 35, 369-389.
Stephan, A.H., Madison, D.V., Mateos, J.M., Fraser, D.A., Lovelett, E.A., Coutellier, L., Kim, L., Tsai, H.H., Huang, E.J., Rowitch, D.H., et al. (2013). A dramatic increase of C1q protein in the CNS during normal aging. The Journal of neuroscience : the official journal of the Society for Neuroscience 33, 13460-13474.
Stevens, B., Allen, N.J., Vazquez, L.E., Howell, G.R., Christopherson, K.S., Nouri, N., Micheva, K.D., Mehalow, A.K., Huberman, A.D., Stafford, B., et al. (2007). The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164-1178.
Terry, R.D., Masliah, E., Salmon, D.P., Butters, N., DeTeresa, R., Hill, R., Hansen, L.A., and Katzman, R. (1991). Physical basis of cognitive alterations in Alzheimer''s disease: synapse loss is the major correlate of cognitive impairment. Annals of neurology 30, 572-580.
Wan, L., and Huang, J. (2014). The PSO4 protein complex associates with replication protein A (RPA) and modulates the activation of ataxia telangiectasia-mutated and Rad3-related (ATR). The Journal of biological chemistry 289, 6619-6626.
Wright, A.L., Zinn, R., Hohensinn, B., Konen, L.M., Beynon, S.B., Tan, R.P., Clark, I.A., Abdipranoto, A., and Vissel, B. (2013). Neuroinflammation and neuronal loss precede Abeta plaque deposition in the hAPP-J20 mouse model of Alzheimer''s disease. PloS one 8, e59586.
Xu, Q., Wang, F., Xiang, Y., Zhang, X., Zhao, Z.A., Gao, Z., Liu, W., Lu, X., Liu, Y., Yu, X.J., et al. (2015). Maternal BCAS2 protects genomic integrity in mouse early embryonic development. Development 142, 3943-3953.
Zheng, S., Gray, E.E., Chawla, G., Porse, B.T., O''Dell, T.J., and Black, D.L. (2012). PSD-95 is post-transcriptionally repressed during early neural development by PTBP1 and PTBP2. Nature neuroscience 15, 381-388, S381.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊