跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/23 05:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳佳娟
研究生(外文):Chia-Chuan Wu
論文名稱:於水田土壤以早苗蓼作為綠肥對水稻幼苗吸收砷相關效應探討
論文名稱(外文):Effectiveness of green manuring with black heart (Polygonum lapathifolium) into paddy soils on arsenic uptake by rice seedlings
指導教授:李達源李達源引用關係
指導教授(外文):Dar-Yuan Lee
口試委員:王尚禮莊愷瑋鄒裕民鍾仁賜
口試日期:2018-07-09
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:109
中文關鍵詞:有機砷綠肥水稻甲基化早苗蓼
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
除了以施用矽肥、磷肥、鐵物質、水分管理、植生復育等方法降低水稻砷有效性,藉由於土壤施用有機質提高穀粒有機砷物種比例降低無機砷物種比例也是近來降低攝食稻米帶來的砷健康風險的另一研究方向,因為有機砷物種對人體毒性較低。但過往研究也發現有機質施用會提高水稻砷有效性,以有機質添加提高水稻植體有機砷物種比例時,需同時評估砷有效性提高的風險。本研究以綠肥作物早苗蓼栽種作為有機質施用來源探討裏作早苗蓼對下一期水稻砷有效性與砷物種分布之影響。早苗蓼在水稻田為具自播性的水生植物,施用成本低廉; 此外,過往研究亦證實種植早苗蓼可藉由其根部類似鐵膜之結構固定土壤砷,降低土壤砷有效性。為兼顧砷有效性評估,本研究以關渡系、菜公厝系兩種砷吸附容量不同的土壤與淇武蘭系土壤額外添加砷等土壤進行盆栽試驗。第一階段早苗蓼盆栽試驗先種植、翻耕早苗蓼,並接續種植水稻,進行第二階段水稻盆栽試驗。早苗蓼盆栽試驗顯示,在田間容水量之下栽種早苗蓼,其植體砷總吸收量稀少,早苗蓼植體在本研究無植體吸收並固定土壤砷的功能,但也不會因植體吸收砷再釋出造成水稻砷有效性提高。水稻盆栽試驗期間孔隙水砷、鐵濃度分析顯示,翻耕早苗蓼可促進鐵氧化物還原溶解使更多鐵、砷釋出,但從孔隙水砷、鐵濃度相關性分析得知,有機質與砷競爭非特異性吸附位相可能為砷移動性提高的另一原因。孔隙水砷物種分析顯示,翻耕早苗蓼可提高孔隙水中有機砷物種比例,但同時有更多無機砷釋出。水稻植體分析顯示,在黏粒含量較高、非特異性吸持砷少的土壤如關渡低砷、淇武蘭低砷,翻耕早苗蓼雖促進砷釋出,但因土壤質地使有機質分解較慢而未造成明顯毒害,同時植體有機砷物種比例提高,可作為提高水稻有機砷物種比例的田間操作。在砂粒含量較高或非特異性吸持砷多的土壤如關渡高砷、菜公厝土壤、淇武蘭高砷土壤,因土壤質地使有機質分解較快,翻耕早苗蓼雖提高孔隙水有機砷物種比例同時有大量砷釋出造成毒害。再者,非特異性吸持砷劃分多的土壤,除了因促進鐵氧化物還原溶解使砷釋出,有機質與砷競爭吸附位相也可能是促進砷釋出的重要機制,使翻耕早苗蓼造成砷移動性提高的效應比非特異性吸持砷劃分少的土壤顯著。
Besides various mitigation methods suggested to reduce arsenic(As) bioavailability, decreasing inorganic arsenic accumulation in grain via organic matter addition into soil have been discussed in previous studies since organic As species were less toxic and may furthered leave rice plants through volatilization. However, previous studies also revealed that organic matter addition may mobilize soil-As resulting from promoted reductive dissolution of iron oxide. To evaluate feasibility of increasing organic As species by organic matter application, risk of increasing As availability should be considered at the same time. Our research aimed to investigate the effect of green manuring Black heart (Polygonum lapathifolium) into paddy soils on arsenic uptake by rice seedlings. Green manuring has received more attention recently owing to its low-cost and landscaping. Among of green manure plants, Black heart is a self-broadcasting wetland plant in paddy field and has been identified as the plant with potential on As remediation. In our research, three paddy soils in Taiwan, Guandu series (Gd), Chaikongtso series (Cl) and Chiwulan series (Ca) were used for pot experiments. There were two levels of As concentrations in each soil (i.e. high level(H): 74 -139 mg As kg-1 and low level(L): 21-38 mg As kg-1). In the results, As contents in black heart were mere comparing to that in rice plants, which implied that As releasing from black heart caused little influence on As availability of rice seedlings. Plowing black heart into soil brought slightly difference on pH and Eh measurements while As and iron(Fe) release were promoted based on porewater analysis. Competition of non-specific adsorption site between organic matter and As should also contribute to promoted As releasing after plowing black heart. Based on rice seedlings analysis, in soils that were with fine texture and less non-specifically adsorption-As such as GdL and CaL soil, plowing Black heart mobilized As without severe toxicity. In addition, increased organic-As proportion in plants was observed. In soils that were with coarse texture or more non-specifically adsorption-As such as GdH,ClL,ClH and CaH soil, plowing Black heart mobilized As and moreover, aggravated As toxicity in rice seedlings.
第一章、 緒論....................1
1.1砷的化學特性與用途.............1
1.2砷的毒性............. 3
1.3砷的來源............. 4
1.4人類對砷的暴露途徑.... 7
1.5降低水稻砷有效性 – 相關研究回顧 ...11
1.5.1施用磷肥與矽肥..................11
1.5.2 選育低砷累積效率之水稻品種......11
1.5.3 水分管理.......................11
1.5.4鐵、錳物質施用...................12
1.5.5植生復育........................13
1.6水稻植體砷甲基化...................14
1.7田間操作對水稻砷有效性之影響........15
1.8綠肥作物施用對水稻砷有效性影響......16
1.9早苗蓼............................18
1.10研究動機與目的....................21
第二章、材料與方法.....................23
2.1 供試土壤採集......................23
2.2 淇武蘭土壤添加五價砷處理...........23
2.3 供試土壤基本性質分析...............24
2.3.1土壤水分含量:土壤及底泥水分含量測定方法-重量法...24
2.3.2土壤pH值:玻璃電極法............................24
2.3.3土壤質地:比重計法..............................24
2.3.4土壤有機質含量 : Walkley-Black Method...........25
2.3.5土壤無定型鐵鋁氧化物含量:草酸銨抽出法............26
2.3.6土壤游離型鐵鋁氧化物含量: DCB 抽出法..............26
2.3.7 土壤重金屬總量分析:微波輔助-王水消化法...........27
2.4 早苗蓼盆栽試驗(此試驗為水稻盆栽試驗之預處理)........28
2.4.1供試土壤處理....................................28
2.4.2早苗蓼幼苗培育..................................28
2.4.3早苗蓼植株栽培..................................29
2.4.4早苗蓼植體翻拌..................................29
2.4.5早苗蓼植體採收..................................30
2.4.6早苗蓼根部鐵膜萃取- DCB 法......................30
2.4.7早苗蓼植體分析- HNO3-H2O2 法...................31
2.5水稻盆栽試驗.....................................31
2.5.1供試水稻品種...................................31
2.5.2水稻秧苗培育...................................31
2.5.3土壤添加基肥處理...............................34
2.5.4水稻植株栽培...................................34
2.5.5水稻生長期間盆栽土壤pH、氧化還原電位監測、土壤孔隙水採集與分析...............................................34
2.5.6水稻植體採收...................................36
2.5.7水稻根部鐵膜萃取- DCB 法.......................36
2.5.8水稻植體分析..................................37
2.5.9水稻盆栽試驗後土壤採集.........................39
2.6水稻盆栽試驗後土壤性質分析.......................40
2.6.1土壤有機質含量: Walkley-Black Method..........40
2.7儀器參數設置....................................41
2.7.1感應耦合電漿原子發射光譜儀 ....................41
2.7.2感應耦合電漿質譜分析儀 .......................42
2.7.3高效液相層析儀串接感應耦合電漿-質譜分析儀 ......43
第三章、結果與討論.................................44
3.1試驗土壤基本性質................................44
3.2早苗蓼植體分析..................................48
3.3水稻栽培期間各處理盆栽土壤pH值變化...............50
3.4水稻栽培期間各處理盆栽土壤Eh值變化...............52
3.5水稻栽培期間各處理盆栽土壤孔隙水砷、鐵濃度變化.....55
3.6水稻栽培初期、終期關渡、菜公厝、淇武蘭土壤孔隙水砷物種變化 ..................................................64
3.7水稻植體分析....................................72
3.8水稻植體砷物種分布..............................80
3.9栽培後土壤有機質含量分析........................85
第四章、結論......................................87
第五章、參考文獻..................................88
第六章、附錄.....................................106
吳正宗、陳仁炫 (2006)。綠肥作物栽培利用手冊(第一版)。行政院農委會農糧署

行政院環保署環境檢驗所(2012)。土壤及底泥水分含量測定方法-重量法。(NIEA S280.62C)

行政院環保署環境檢驗所(2015)。土壤中重金屬檢測方法-微波輔助-王水消化法。(NIEA S280.62C)

陳梅桂。2012。土壤性質與水稻品種對鐵膜的生成與水稻吸收砷之影響。國立台灣大學農業化學系碩士論文

吳佩蓉。2013。添加不同有機質材至砷汙染土壤中對土壤溶液砷濃度及水稻幼苗砷吸收量之影響。國立台灣大學農業化學系碩士論文

許健輝。2014。水稻品種及根部鐵膜對關渡平原土壤中植體砷累積及物種之影響。國立台灣大學農業化學系博士論文

楊圃臺。2017。關渡和平鎮土壤的砷有效性在水稻生長期間變化之機制。國立台灣大學農業化學系碩士論文

蘇育萩(1995)。水稻田用早苗蓼作為綠肥之研究。未出版之博士論文,國立臺灣大學農業化學研究所,台北市。

Althobiti, R. A., Sadiq, N. W., & Beauchemin, D. (2018). Realistic risk assessment of arsenic in rice. Food Chem, 257, 230-236. doi:10.1016/j.foodchem.2018.03.015

Arao, T., Kawasaki, A., Baba, K., Mori, S., & Matsumoto, S. (2009). Effects of Water Management on Cadmium and Arsenic Accumulation and Dimethylarsinic Acid Concentrations in Japanese Rice. Environ Sci Technol, 43, 9361-9367. doi:10.1021/es9022738

Byrne, A. R., Slejkovec, Z., Stijve,T., Fay, S. L., Gossler,W., Gailer, J. S. & Irgolic, K. J. (1995). Arsenobetaine and Other Arsenic Species in Mushroom. Appl Organomet Chem, 9, 305-313. doi: 10.1002/aoc.590090403

Chen, C., Huang, K., Xie, W. Y., Chen, S. H., Tang, Z., & Zhao, F. J. (2017). Microbial Processes Mediating the Evolution of Methylarsine Gases from Dimethylarsenate in Paddy Soils. Environ Sci Technol, 51, 13190-13198. doi:10.1021/acs.est.7b04791

Chen, Y., Moore, K. L., Miller, A. J., McGrath, S. P., Ma, J. F., & Zhao, F. J. (2015). The role of nodes in arsenic storage and distribution in rice. J Exp Bot, 66, 3717-3724. doi:10.1093/jxb/erv164

Chiang, K. Y., Lin, K. C., Lin, S. C., Chang, T. K., & Wang, M. K. (2010). Arsenic and lead (beudantite) contamination of agricultural rice soils in the Guandu Plain of northern Taiwan. J Hazard Mater, 181, 1066-1071. doi:10.1016/j.jhazmat.2010.05.123

Dixit, S. & Hering, J. G. (2003). Comparison of Arsenic(V) and Arsenic(III) Sorption onto Iron Oxide Minerals: Implications for Arsenic Mobility. Environ Sci Technol, 37, 4182-4189. doi: 10.1021/es030309t

Duan, G.-L., Hu, Y., Liu, W.-J., Kneer, R., Zhao, F.-J., & Zhu, Y.-G. (2011). Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grain. Environ Exp Bot, 71, 416-421. doi:10.1016/j.envexpbot.2011.02.016

Fageria, N. K., Carvalho, G. D., Santos, A. B., Ferreira, E. P. B., & Knupp, A. M. (2011). Chemistry of Lowland Rice Soils and Nutrient Availability. Commun Soil Sci Plan, 42, 1913-1933. doi:10.1080/00103624.2011.591467

Feng, X. M., Han, L., Chao, D. Y., Liu, Y., Zhang, Y. J., Wang, R. G., Guo, J. K., Feng, R. W., Xu, Y. M., Ding, Y. Z., Huang, B. Y., & Zhang, G. L. (2017). Ionomic and transcriptomic analysis provides new insight into the distribution and transport of cadmium and arsenic in rice. J Hazard Mater, 331, 246-256. doi:10.1016/j.jhazmat.2017.02.041

Fresno, T., Penalosa, J. M., Santner, J., Puschenreiter, M., Prohaska, T., & Moreno-Jimenez, E. (2016). Iron plaque formed under aerobic conditions efficiently immobilizes arsenic in Lupinus albus L roots. Environ Pollut, 216, 215-222. doi:10.1016/j.envpol.2016.05.071

Frohne, T., Rinklebe, J., Diaz-Bone, R. A., & Du Laing, G. (2011). Controlled variation of redox conditions in a floodplain soil: Impact on metal mobilization and biomethylation of arsenic and antimony. Geoderma, 160, 414-424. doi:10.1016/j.geoderma.2010.10.012

Galloway, J. M., Swindles, G. T., Jamieson, H. E., Palmer, M., Parsons, M. B., Sanei, H., Macumber, A. L., Patterson, R. T., & Falck, H. (2018). Organic matter control on the distribution of arsenic in lake sediments impacted by ~65years of gold ore processing in subarctic Canada. Sci Total Environ, 622-623, 1668-1679.
doi:10.1016/j.scitotenv.2017.10.048

Gee, G. W., & Bauder, J. W. (1986). Particle-size Analysis1. In A. Klute (Ed.), Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods (pp. 383-411). Madison, WI: Soil Science Society of America, American Society of Agronomy.

Grüter, R., Meister, A., Schulin, R., & Tandy, S. (2017). Green manure effects on zinc and cadmium accumulation in wheat grains (Triticum aestivum L.) on high and low zinc soils. Plant Soil, 422, 437-453. doi:10.1007/s11104-017-3486-4

Guo, W., Hou, Y. L., Wang, S. G., & Zhu, Y. G. (2005). Effect of silicate on the growth and arsenate uptake by rice (Oryza sativa L.) seedlings in solution culture. Plant Soil, 272(1-2), 173-181. doi:10.1007/s11104-004-4732-0

Herath, I., Vithanage, M., Bundschuh, J., Maity, J. P., & Bhattacharya, P. (2016). Natural Arsenic in Global Groundwaters: Distribution and Geochemical Triggers for Mobilization. Curr Pollut Rep, 2, 68-89. doi:10.1007/s40726-016-0028-2

Hettick, B. E., Canas-Carrell, J. E., French, A. D., & Klein, D. M. (2015). Arsenic: A Review of the Element''s Toxicity, Plant Interactions, and Potential Methods of Remediation. J Agric Food Chem, 63, 7097-7107. doi:10.1021/acs.jafc.5b02487

Honma, T., Ohba, H., Kaneko-Kadokura, A., Makino, T., Nakamura, K., & Katou, H. (2016). Optimal Soil Eh, pH, and Water Management for Simultaneously Minimizing Arsenic and Cadmium Concentrations in Rice Grains. Environ Sci Technol, 50, 4178-4185. doi:10.1021/acs.est.5b05424

Honma, T., Ohba, H., Kaneko, A., Nakamura, K., Makino, T., & Katou, H. (2016). Effects of soil amendments on arsenic and cadmium uptake by rice plants (Oryza sativa L. cv. Koshihikari) under different water management practices. Soil Sci Plant Nutr, 62, 349-356. doi:10.1080/00380768.2016.1196569

Huang, J. H., Ilgen, G., & Fecher, P. (2010). Quantitative chemical extraction for arsenic speciation in rice grains. J Anal At Spectrom, 25, 800-802. doi: 10.1039/c002306j

Islam, S., Rahman, M. M., Islam, M. R., & Naidu, R. (2017). Effect of irrigation and genotypes towards reduction in arsenic load in rice. Sci Total Environ, 609, 311-318. doi:10.1016/j.scitotenv.2017.07.111

Jia, Y., Huang, H., Zhong, M., Wang, F. H., Zhang, L. M., & Zhu, Y. G. (2013). Microbial arsenic methylation in soil and rice rhizosphere. Environ Sci Technol, 47, 3141-3148. doi:10.1021/es303649v

Munch, J.C., Ottow, J.C.G. (1980). Preferential reduction of amorphous to crystalline iron oxide by bacterial activity. Soil Sci, 129, 15-21. doi: 10.1097/00010694-198001000-00004

Joseph, T., Dubey, B., & McBean, E. A. (2015). A critical review of arsenic exposures for Bangladeshi adults. Sci Total Environ, 527-528, 540-551. doi:10.1016/j.scitotenv.2015.05.035

Kanasaki, J., Tanimura, H., & Tanimura, K. (2014). Imaging energy-, momentum-, and time-resolved distributions of photoinjected hot electrons in GaAs. Phys Rev Lett, 113, 237401. doi:10.1103/PhysRevLett.113.237401

Lafferty, B. J. & Loeppert, R. H. (2005). Methyl Arsenic Adsorption and Desorption Behavior on Iron Oxides. Environ Sci Technol, 39, 2120-2127. doi:10.1021/es048701

Lee, C.-H., Wu, C.-H., Syu, C.-H., Jiang, P.-Y., Huang, C.-C., & Lee, D.-Y. (2016). Effects of phosphorous application on arsenic toxicity to and uptake by rice seedlings in As-contaminated paddy soils. Geoderma, 270, 60-67. doi:10.1016/j.geoderma.2016.01.003

Li, G., Khan, S., Ibrahim, M., Sun, T. R., Tang, J. F., Cotner, J. B., & Xu, Y. Y. (2018). Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium. J Hazard Mater, 348, 100-108. doi:10.1016/j.jhazmat.2018.01.031

Li, H., Ye, Z. H., Wei, Z. J., & Wong, M. H. (2011). Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants. Environ Pollut, 159, 30-37. doi:10.1016/j.envpol.2010.09.031

Li, N., Wang, J., & Song, W. Y. (2016). Arsenic Uptake and Translocation in Plants. Plant Cell Physiol, 57, 4-13. doi:10.1093/pcp/pcv143

Lierop, W.V. (1990). Soil pH and Lime Requirement Determination. In R. L. (Ed.), Soil testing and plant analysis (pp. 80-81). Madison, WI: Soil Science Society of America.

Limmer, M. A., Mann, J., Amaral, D. C., Vargas, R., & Seyfferth, A. L. (2018). Silicon-rich amendments in rice paddies: Effects on arsenic uptake and biogeochemistry. Sci Total Environ, 624, 1360-1368. doi:10.1016/j.scitotenv.2017.12.207

Lin, Y. B., Lin, Y. P., Liu, C. W., & Tan, Y. C. (2006). Mapping of spatial multi-scale sources of arsenic variation in groundwater on ChiaNan floodplain of Taiwan. Sci Total Environ, 370, 168-181. doi:10.1016/j.scitotenv.2006.07.002

Lin, H. T., Wang, M. C., & Li, G. C. (2002). Effect of Water extract of Compost on the Adsorption of Arsenate by two Calcareous Soils. Water Air Soil Pollut, 138, 359-374. doi: 10.1023/A:1015534302225

Liu, W. J., Zhu, Y. G., Hu, Y., Williams, P. N., Gault, A. G., Meharg, A. A., Charnock, J.M., & Smith, F. A. (2006). Arsenic Sequestration in Iron Plaque, Its Accumulation and Speciation in Mature Rice Plants (Oryza Sativa L.). Environ Sci Technol, 40(18), 5730-5736. doi: 10.1021/es060800v

Ma, R., Shen, J., Wu, J., Tang, Z., Shen, Q., & Zhao, F. J. (2014). Impact of agronomic practices on arsenic accumulation and speciation in rice grain. Environ Pollut, 194, 217-223. doi:10.1016/j.envpol.2014.08.004

Mckeague, J. A. & Day, J. H. (1966). Dithionite and oxalate extractable Fe and Al as aids in differentiating various classes of soils. Can J Soil Sci, 46, 13-22.

Matsumoto, S., Kasuga, J., Makino, T., & Arao, T. (2016). Evaluation of the effects of application of iron materials on the accumulation and speciation of arsenic in rice grain grown on uncontaminated soil with relatively high levels of arsenic. Environ Exp Bot, 125, 42-51. doi:10.1016/j.envexpbot.2016.02.002

Meharg, A. A. & Hartley-Whitaker, J. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. (2002). New Phytol, 154, 29–43. doi:10.1046/j.1469-8137.2002.00363

Mehra, O. P. & Jackson, M. L. (1960). Iron oxide removal from soils and clays by a dithionite – citrate system buffered with sodium bicarbonate. In I. E. (Ed.), Clays and clays minerals, (pp317-327). Washington, D.C: Clay Minerals Committee, National Academy of Sciences—National Research Council.

Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid and semiarid environments--an emerging remediation technology. Environ Health Perspect, 116, 278-283. doi:10.1289/ehp.10608

Meng, X. Y., Qin, J., Wang, L. H., Duan, G. L., Sun, G. X., Wu, H. L., Chu, C. C., Ling, H. Q., Rosen, B. P., & Zhu, Y. G. (2011). Arsenic biotransformation and volatilization in transgenic rice. New Phytol, 191, 49-56. doi:10.1111/j.1469-8137.2011.03743.x

Minamikawa, K., Takahashi, M., Makino, T., Tago, K., & Hayatsu, M. (2015). Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy. Environ Res Lett, 10. doi:10.1088/1748-9326/10/8/084012

Mishra, S., Mattusch, J., & Wennrich, R. (2017). Accumulation and transformation of inorganic and organic arsenic in rice and role of thiol-complexation to restrict their translocation to shoot. Sci Rep, 7, 40522. doi:10.1038/srep40522

Mitra, A., Chatterjee, S., Moogouei, R., & Gupta, D. (2017). Arsenic Accumulation in Rice and Probable Mitigation Approaches: A Review. Agronomy, 7. doi:10.3390/agronomy7040067

Nelson, D. W., & Sommers, L. E. (1982). Total Carbon, Organic Carbon, and Organic Matter1. In A. L. (Ed.), Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (pp. 539-579). Madison, WI: American Society of Agronomy, Soil Science Society of America.

Niazi, N. K., Singh, B., & Shah, P. (2011). Arsenic speciation and phytoavailability in contaminated soils using a sequential extraction procedure and XANES spectroscopy. Environ Sci Technol, 45, 7135-7142. doi:10.1021/es201677z

Norton, G. J., Adomako, E. E., Deacon, C. M., Carey, A. M., Price, A. H., & Meharg, A. A. (2013). Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species. Environ Pollut, 177, 38-47. doi:10.1016/j.envpol.2013.01.049

Oyuela Leguizamo, M. A., Fernandez Gomez, W. D., & Sarmiento, M. C. G. (2017). Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands - A review. Chemosphere, 168, 1230-1247. doi:10.1016/j.chemosphere.2016.10.075

Panda, S. K., Upadhyay, R. K., & Nath, S. (2010). Arsenic Stress in Plants. J Agro Crop Sci, 196, 161-174. doi:10.1111/j.1439-037X.2009.00407.x

Pinson, S. R. M., Tarpley, L., Yan, W., Yeater, K., Lahner, B., Yakubova, E., Huang, X. Y., Zhang, M., Guerinot, M. L., & Salt, D. E. (2015). Worldwide Genetic Diversity for Mineral Element Concentrations in Rice Grain. Crop Sci, 55. doi:10.2135/cropsci2013.10.0656

Rahaman, S., Sinha, A. C., & Mukhopadhyay, D. (2011). Effect of water regimes and organic matters on transport of arsenic in summer rice (Oryza sativa L.). J Environ Sci, 23, 633-639. doi:10.1016/s1001-0742(10)60457-3

Rahman, M. A., Hasegawa, H., Rahman, M. M., Miah, M. A. M., & Tasmin, A. (2008). Straighthead disease of rice (Oryza sativa L.) induced by arsenic toxicity. Environ Exp Bot, 62, 54-59. doi:10.1016/j.envexpbot.2007.07.016

Redman, A. D., Macalady, D. L. & Ahmann, D. (2002). Natural Organic Matter Affects Arsenic Speciation and Sorption onto Hematite. Environ Sci Technol, 36, 2889-2896. doi:10.1021/es0112801

Reid, M. C., Maillard, J., Bagnoud, A., Falquet, L., Le Vo, P., & Bernier-Latmani, R. (2017). Arsenic Methylation Dynamics in a Rice Paddy Soil Anaerobic Enrichment Culture. Environ Sci Technol, 51, 10546-10554. doi:10.1021/acs.est.7b02970

Rostaminia, M., Mahmoodi, S., Gol Sefidi, H. T., Pazira, E. & Kafaee, S.B. (2011). Study of Reduction-Oxidation Potential and Chemical Charcteristics of a Paddy Field During Rice Growing Season. J Appl Sci, 11, 1004-1011. doi:10.3923/jas.2011.1004.1011

Saifullah, Dahlawi, S., Naeem, A., Iqbal, M., Farooq, M. A., Bibi, S., & Rengel, Z. (2018). Opportunities and challenges in the use of mineral nutrition for minimizing arsenic toxicity and accumulation in rice: A critical review. Chemosphere, 194, 171-188. doi:10.1016/j.chemosphere.2017.11.149

Saint-Jacques, N., Parker, L., Brown, P., & Dummer, Trevor J.B. (2014). Arsenic in drinking water and urinary tract cancers: a systematic review of 30 years of epidemiological evidence. Environ Health, 13, 44. doi: 10.1186/1476-069X-13-44.

Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., Rehim, A., & Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, 171, 710-721. doi:10.1016/j.chemosphere.2016.12.116

Sharma, V. K., & Sohn, M. (2009). Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int, 35, 743-759. doi:10.1016/j.envint.2009.01.005

Shimizu, M., Ginger-vogel, A., Parikhs, A. J., & Sparks D. L. (2010). Molecular Scale Assessment of Methylarsenic Sorption on Aluminum Oxide. Environ Sci Technol, 44, 612–617. doi:10.1021/es9027502

Sun, G. X., Williams, P. N., Zhu, Y. G., Deacon, C., Carey, A. M., Raab, A., Feldmann, J., & Meharg, A. A. (2009). Survey of arsenic and its speciation in rice products such as breakfast cereals, rice crackers and Japanese rice condiments. Environ Int, 35, 473-475. doi: 10.1016/j.envint.2008.07.020

Syu, C.-H., Jiang, P.-Y., Huang, H.-H., Chen, W.-T., Lin, T.-H., & Lee, D.-Y. (2013). Arsenic sequestration in iron plaque and its effect on As uptake by rice plants grown in paddy soils with high contents of As, iron oxides, and organic matter. Soil Sci Plant Nutr, 59, 463-471. doi:10.1080/00380768.2013.784950

Syu, C.-H., Huang, C.-C., Jiang, P.-Y., Chien, P.-H., Wang, H.-Y., Su, J.-Y., & Lee, D.-Y. (2015). Effects of foliar and soil application of sodium silicate on arsenic toxicity and accumulation in rice (Oryza sativa L.) seedlings grown in As-contaminated paddy soils. Soil Sci Plant Nutr, 62, 357-366. doi:10.1080/00380768.2015.1125763

Talukder, A. S. M. H. M., Meisner, C. A., Sarkar, M. A. R., Islam, M. S., & Sayre, K. D. (2014). Effects of Water Management, Arsenic and Phosphorus Levels on Rice Yield in High-Arsenic Soil-Water System. Rice Sci, 21, 99-107. doi:10.1016/s1672-6308(13)60172-9

Tang, Z., Lv, Y., Chen, F., Zhang, W., Rosen, B. P., & Zhao, F. J. (2016). Arsenic Methylation in Arabidopsis thaliana Expressing an Algal Arsenite Methyltransferase Gene Increases Arsenic Phytotoxicity. J Agric Food Chem, 64, 2674-2681. doi:10.1021/acs.jafc.6b00462

Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Anal Chem, 51, 844-851.

Tseng, C. H., Huang, Y. K., Huang, Y. L., Chung, C. J., Yang, M. H., Chen, C. J., & Hsueh, Y. M. (2005). Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan. Toxicol Appl Pharmacol, 206, 299-308. doi:10.1016/j.taap.2004.11.022

Verma, S., Verma, P. K., Meher, A. K., Bansiwal, A. K., Tripathi, R. D., & Chakrabarty, D. (2018). A novel fungal arsenic methyltransferase, WaarsM reduces grain arsenic accumulation in transgenic rice (Oryza sativa L.). J Hazard Mater, 344, 626-634. doi:10.1016/j.jhazmat.2017.10.037

Vriens, B., Lenz, M., Charlet, L., Berg, M., & Winkel, L. H. (2014). Natural wetland emissions of methylated trace elements. Nat Commun, 5, 3035. doi:10.1038/ncomms4035

Wang, S., & Shi, W. (2018). The Role of the Photo-Generated Carrier in Surface Flashover of the GaAs Photoconductive Semiconductor Switch. IEEE Journal of the Electron Devices Society, 6, 179-182. doi:10.1109/jeds.2017.2783898

Wang, X., Liu, T., Li, F., Li, B., & Liu, C. (2018). Effects of Simultaneous Application of Ferrous Iron and Nitrate on Arsenic Accumulation in Rice Grown in Contaminated Paddy Soil. ACS Earth and Space Chemistry, 2, 103-111. doi:10.1021/acsearthspacechem.7b00115

Wang, Y., Zeng, X., Lu, Y., Bai, L., Su, S., & Wu, C. (2017). Dynamic arsenic aging processes and their mechanisms in nine types of Chinese soils. Chemosphere, 187, 404-412. doi:10.1016/j.chemosphere.2017.08.086

Wenzel, W. W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombic, E., Adriano, D. C. (2001). Arsenic fractionation in soils using an improved sequential extraction procedure. Anal Chim Acta, 436, 309–323. doi:10.1016/S0003-2670(01)00924-2

Xiao, K. Q., Li, L. G., Ma, L. P., Zhang, S. Y., Bao, P., Zhang, T., & Zhu, Y. G. (2016). Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents. Environ Pollut, 211, 1-8. doi:10.1016/j.envpol.2015.12.023

Xu, X. Y., Mcgrath, S. P., Meharg, A. A., & Zhao, F. J. (2008). Growing Rice Aerobically Markedly Decreases Arsenic Accumulation. Environ Sci Technol, 42, 5574–5579. doi:10.1021/es800324u

Xue, X. M., Ye, J., Raber, G., Francesconi, K. A., Li, G., Gao, H., Yan, Y., Rensing, C., & Zhu, Y. G. (2017). Arsenic Methyltransferase is Involved in Arsenosugar Biosynthesis by Providing DMA. Environ Sci Technol, 51, 1224-1230. doi:10.1021/acs.est.6b04952

Yan, W., Dilday, R. H., Tai, T. H., Gibbons, J. W., McNew, R. W., & Rutger, J. N. (2005). Differential Response of Rice Germplasm to Straighthead Induced by Arsenic. Crop Science, 45. doi:10.2135/cropsci2004.0348

Yang, H. J., Lee, C. Y., Chiang, Y. J., Jean, J. S., Shau, Y. H., Takazawa, E., & Jiang, W. T. (2016). Distribution and hosts of arsenic in a sediment core from the Chianan Plain in SW Taiwan: Implications on arsenic primary source and release mechanisms. Sci Total Environ, 569-570, 212-222. doi:10.1016/j.scitotenv.2016.06.122

Yang, K., Jeong, S., Jho, E. H., & Nam, K. (2016). Effect of biogeochemical interactions on bioaccessibility of arsenic in soils of a former smelter site in Republic of Korea. Environ Geochem Health, 38, 1347-1354. doi:10.1007/s10653-016-9800-x

Yang, Y. P., Zhang, H. M., Yuan, H. Y., Duan, G. L., Jin, D. C., Zhao, F. J., & Zhu, Y. G. (2018). Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Environ Pollut, 236, 598-608. doi:10.1016/j.envpol.2018.01.099

Ye, H., Yang, Z., Wu, X., Wang, J., Du, D., Cai, J., Lv, K., Chen, H. Y., Mei, J. K., Chen, M. Q., & Du, H. (2017). Sediment biomarker, bacterial community characterization of high arsenic aquifers in Jianghan Plain, China. Sci Rep, 7, 42037. doi:10.1038/srep42037

Ye, W. L., Khan, M. A., McGrath, S. P., & Zhao, F. J. (2011). Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Environ Pollut, 159, 3739-3743. doi:10.1016/j.envpol.2011.07.024

Yoshida, S. (1976). Laboratory Manual for Physiological studies of Rice: Routine procedure for growing rice plants in culture solution ( pp. 61-66). In Yoshida, S., Forno, D.A., Cook, J.H. & Gomez, K.A. (Ed.). Manilla: International Rice Research Institute.

Zhai, W., Wong, M. T., Luo, F., Hashmi, M. Z., Liu, X., Edwards, E. A., Tang, X. J., & Xu, J. M. (2017). Arsenic Methylation and its Relationship to Abundance and Diversity of arsM Genes in Composting Manure. Sci Rep, 7, 42198. doi:10.1038/srep42198

Zhao, F.-J., Stroud, J. L., Khan, M. A., & McGrath, S. P. (2011). Arsenic translocation in rice investigated using radioactive 73As tracer. Plant Soil, 350, 413-420. doi:10.1007/s11104-011-0926-4

Zhao, F. J., Harris, E., Yan, J., Ma, J. C., Wu, L. Y., Liu, W. J., McGrath, S. P.,
Zhou, J.H., & Zhu, Y. G. (2013). Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and as speciation in rice. Environ Sci Technol, 47, 7147-7154. doi:10.1021/es304977m

Zhao, F. J., Zhu, Y. G., & Meharg, A. A. (2013). Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms. Environ Sci Technol, 47, 3957-3966. doi:10.1021/es304295
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊