跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/23 07:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃乃軒
研究生(外文):Nai-Hsuan Huang
論文名稱:5G網路下免許可傳輸非正交多工存取之用戶偵測與領航序列碼設計
論文名稱(外文):User Activity Detection and Pilot Sequence Design for Uplink Grant-free NOMA in 5G Networks
指導教授:闕志達
口試委員:賴以威王奕翔
口試日期:2018-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:107
中文關鍵詞:免許可傳輸非正交多工存取用戶偵測領航序列碼設計時變通道可適性最大期望演算法
相關次數:
  • 被引用被引用:0
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大規模機器通訊 (mMTC) 是第五代 (5G) 無線通訊系統三大應用場景之一,機器通訊的特色在於資料量小,屬於偶發性流量 (Sporadic Traffic),是一種以上行為主的應用場景;上行免許可非正交多工存取 (Uplink Grant-Free NOMA) 是目前在文獻中與3GPP會議中備受關注的一項技術,這項技術主要將以往4G使用者與基地台之間的排程過程去除,並且讓多個使用者共享時頻資源,帶來的好處是頻譜使用效益的增加,延遲的減緩 (Latency),和訊號傳送成本的減少;但因為排程過程的去除,使得基地台無法得知使用者資訊,因此在解碼以前必須要先做用戶偵測 (User Activity Detection, UAD) 來偵測有在傳送訊號的使用者,才可以進行解碼。本論文的研究目標在於提高UAD的準確度,項目包含領航序列碼 (Pilot Sequence) 的設計與UAD演算法的開發。
第三章中,介紹了現有文獻在UAD議題上的做法,透過模擬與分析來討論現有文獻的不足之處,並且提出了預強調領航序列碼 (Pre-emphasis Pilot Sequence) 的設計來補足現有文獻的不足之處。
第四章中,考量到一個具有時變效應的通道模型,在這樣的通道模型下只用預強調領航序列碼是不足夠的,因此提出一個可適性列表最大期望演算法 (Adaptive List Expectation Maximization, ALEM),經由模擬證實ALEM是一個對於通道變化具有適應性的一套UAD演算法,比起現有現有文獻演算法擁有更高的精準度與通道變異上的可適性。
在論文的最後一章,提出了一個低複雜度ALEM (Low-complexity ALEM, LALEM),LALEM比起ALEM可以節省大約20倍的運算時間,但效能和ALEM幾乎一樣;同時分析現有演算法的運算量,以不同長度的領航序列碼和使用者數量來視覺化演算法的可擴展性 (Scalability),結論是LALEM擁有最好的效能並且擁有良好的擴展性。
致謝 i
摘要 iii
Abstract v
目錄 vii
圖目錄 xi
表目錄 xv
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 用戶偵測研究現況 5
1.4 論文組織與貢獻 5
第二章 5G-NR機器通訊上行環境介紹 7
2.1 非正交多工存取 (NOMA) 7
2.2 上行免許可傳輸 (Uplink Grant-free Transmission) 8
2.3 機器通訊的資料型態 (Machine Type Communication Traffic Type) 9
2.4 上行接收機架構 (Uplink Receiver Architecture) 10
第三章 領航序列設計 11
3.1 現有文獻介紹與分析 11
3.1.1 訊號模型 11
3.1.2 DGOMP [20,33] 15
3.1.3 SBL [21,22,31] 19
3.1.4 FOCUSS [19,36,37] 24
3.1.5 現有文獻之模擬與分析 26
3.2 本論文提出的領航序列設計 33
3.2.1 領航序列設計之模擬與分析 35
3.3 第三章總結 39
第四章 用戶偵測設計 41
4.1 考量通道時變因素的訊號模型 41
4.2 本論文所提出的用戶偵測設計 43
4.2.1 用戶偵測之演算法設計 43
4.2.2 用戶偵測之架構 47
4.3 用戶偵測設計之模擬與分析 58
4.4 第四章總結 63
第五章 用戶偵測之低複雜度架構設計 65
5.1 低複雜度架構設計 65
5.2 低複雜度用戶偵測設計之模擬與分析 69
5.3 複雜度分析 72
5.4 第五章總結 81
第六章 結論與展望 83
附錄 85
附錄一 Complexity Analysis of LALEM 85
附錄二 Complexity Analysis of DGOMP 93
附錄三 Complexity Analysis of SBL 95
附錄四 Complexity Analysis of FOCUSS 96
附錄五 Complexity of Log2 97
附錄六 Uncorrelated channel variation rate 101
參考文獻 103
[1]Ericsso, “Mobile data traffic growth outlook,” ericsson.com, para. 4. Nov. 2017. [Online]. Available: https://www.ericsson.com/en/mobility-report/reports/november-2017/mobile-data-traffic-growth-outlook. [Accessed Jul. 24, 2018].
[2]ITU-R M.2083-0 IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond.
[3]ETSI, “Why do we need 5G,” etsi.org, para. 3. [Online]. Available: https://www.etsi.org/technologies-clusters/technologies/5g. [Accessed Jul. 24, 2018].
[4]L. Dai, B. Wang, Y. Yuan, S. Han, C. l. I and Z. Wang, "Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends," in IEEE Communications Magazine, vol. 53, no. 9, pp. 74-81, September 2015.
[5]Y. Yuan et al., "Non-orthogonal transmission technology in LTE evolution," in IEEE Communications Magazine, vol. 54, no. 7, pp. 68-74, July 2016.
[6]Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li and K. Higuchi, "Non-Orthogonal Multiple Access (NOMA) for Cellular Future Radio Access," in Proc. IEEE 77th Vehicular Technology Conference (VTC Spring), Dresden, 2013, pp. 1-5.
[7]C. Bockelmann et al., "Massive machine-type communications in 5g: physical and MAC-layer solutions," in IEEE Communications Magazine, vol. 54, no. 9, pp. 59-65, September 2016.
[8]J. Zhang et al., "PoC of SCMA-Based Uplink Grant-Free Transmission in UCNC for 5G," IEEE Journal on Selected Areas in Communications, vol. 35, no. 6, pp. 1353-1362, June 2017.
[9]Y. Chen et al., "Toward the Standardization of Non-Orthogonal Multiple Access for Next Generation Wireless Networks," in IEEE Communications Magazine, vol. 56, no. 3, pp. 19-27, MARCH 2018.
[10]3GPP TSG RAN meeting #78 RP-172387, Consideration on NOMA Study and Future Plan, Dec. 2017.
[11]P. Popovski et al., "Wireless Access for Ultra-Reliable Low-Latency Communication: Principles and Building Blocks," IEEE Network, vol. 32, no. 2, pp. 16-23, March-April 2018.
[12]B. Wang, L. Dai, Y. Yuan and Z. Wang, "Compressive Sensing Based Multi-User Detection for Uplink Grant-Free Non-Orthogonal Multiple Access," in Proc. IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Boston, MA, 2015, pp. 1-5.
[13]Q. Sun, S. Wang, S. Han, and I. L. Chih, “Unified framework towardsflexible multiple access schemes for 5G,” ZTE Commun., vol. 14, no. 4, pp. 26–34, Oct. 2016.
[14]Y. Liu, Z. Qin, M. Elkashlan, Z. Ding, A. Nallanathan and L. Hanzo, "Nonorthogonal Multiple Access for 5G and Beyond," in Proceedings of the IEEE, vol. 105, no. 12, pp. 2347-2381, Dec. 2017.
[15]3GPP TSG RAN WG1, R1-1611398 UL grant-free transmission for URLLC, CATT).
[16]F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta and P. Popovski, "Five disruptive technology directions for 5G," in IEEE Communications Magazine, vol. 52, no. 2, pp. 74-80, February 2014.
[17]Z. Yuan, Y. Hu, W. Li, J. Dai, “Blind Multi-user Detection for Autonomous Grant-free High-Overloading MA without Reference Signal,” arXiv:1712.02601 [cs.IT], Dec. 2017
[18]X. He, F. Wang, X. Chen, D. Miao and Z. Zhao, "Non-orthogonal waveforms for machine type communication," in Proc. XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Montreal, QC, 2017, pp. 1-4.
[19]A. Bayesteh, E. Yi, H. Nikopour and H. Baligh, "Blind detection of SCMA for uplink grant-free multiple-access," in Proc. International Symposium on Wireless Communications Systems (ISWCS), Barcelona, 2014, pp. 853-857.
[20]J. Liu, G. Wu, S. Li and O. Tirkkonen, "Blind detection of uplink grant-free SCMA with unknown user sparsity," in Proc. IEEE International Conference on Communications (ICC), Paris, 2017, pp. 1-6.
[21]Y. Wang, S. Zhou, L. Xiao, X. Zhang and J. Lian, "Sparse Bayesian learning based user detection and channel estimation for SCMA uplink systems," in Proc. International Conference on Wireless Communications & Signal Processing (WCSP), Nanjing, 2015, pp. 1-5.
[22]K. Struminsky, S. Kruglik, D. Vetrov and I. Oseledets, "A new approach for sparse Bayesian channel estimation in SCMA uplink systems," in Proc. International Conference on Wireless Communications & Signal Processing (WCSP), Yangzhou, 2016, pp. 1-5.
[23]J. W. Choi, B. Shim, Y. Ding, B. Rao and D. I. Kim, "Compressed Sensing for Wireless Communications: Useful Tips and Tricks," IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1527-1550, thirdquarter 2017.
[24]R. Tibshirani, “Regression Shrinkage and Selection via theLASSO,” J. Royal Statistical Soc. B, vol. 58, no. 1, pp. 267-288, 1996.
[25]S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM J. Sci Comp., vol. 20, no. 1, pp. 33–61, 1999.
[26]J. A. Tropp and A. C. Gilbert, "Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit," IEEE Transactions on Information Theory, vol. 53, no. 12, pp. 4655-4666, Dec. 2007.
[27]W. Dai and O. Milenkovic, "Subspace Pursuit for Compressive Sensing Signal Reconstruction," IEEE Transactions on Information Theory, vol. 55, no. 5, pp. 2230-2249, May 2009.
[28]N. B. Karahanoglu and H. Erdogan, "A* orthogonal matching pursuit: Best-first search for compressed sensing signal recovery," Digital SignalProcessing, vol. 22(4), pp. 555-568, 2012.
[29]T. Blumensath and M. E. Davies, “Iterative hard thresholding for compressedsensing,” Appl. Computat. Harmon. Anal., vol. 27, no. 3, pp.265–274, Nov. 2009.
[30]H. B. Xie and T. Guo, "Fuzzy entropy spectrum analysis for biomedical signals de-noising," in Proc. IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Las Vegas, NV, 2018, pp. 50-53.
[31]D. P. Wipf and B. D. Rao, "Sparse Bayesian learning for basis selection," IEEE Transactions on Signal Processing, vol. 52, no. 8, pp. 2153-2164, Aug. 2004.
[32]S. Ji, Y. Xue and L. Carin, "Bayesian Compressive Sensing," IEEE Transactions on Signal Processing, vol. 56, no. 6, pp. 2346-2356, Jun. 2008.
[33]W. Xiong, J. Cao, and S. Li, “Sparse signal recovery with unknownsignal sparsity,” Eurasip J. Adv. in Sig. Process., vol. 1, no. 178, pp. 1-8, 2014.
[34]Borman, S, “The expectation maximization algorithm-a short tutorial,” researchgate.net, Jan. 2004. [Online]. Available: https://www.researchgate.net/publication/265427069_The_Expectation_Maximization_Algorithm_A_short_tutorial. [Accessed Jul. 24, 2018].
[35]Chen, Yihua, and Maya R. Gupta, "Em demystified: An expectation-maximization tutorial," washington.edu, Feb. 2010. [Online]. Available: https://www2.ee.washington.edu/techsite/papers/refer/UWEETR-2010-0002.html. [Accessed Jul. 24, 2018].
[36]I. F. Gorodnitsky and B. D. Rao, "Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm," IEEE Transactions on Signal Processing, vol. 45, no. 3, pp. 600-616, Mar 1997.
[37]Yan Chen, “Sparse Signal Reconstruction Using FOCUSS,” slideserve.com, Nov. 9, 2014. [Online]. Available: https://www.slideserve.com/idona-cobb/sparse-signal-reconstruction-using-focuss. [Accessed Jul. 24, 2018].
[38]3GPP TR38.901, Study on channel model for frequencies from 0.5 to 100 GHz. Dec. 2017.
[39]M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang and J. Wang, "Large-Scale Measurement and Characterization of Cellular Machine-to-Machine Traffic," IEEE/ACM Transactions on Networking, vol. 21, no. 6, pp. 1960-1973, Dec. 2013.
[40]N. Nikaein et al., "Simple Traffic Modeling Framework for Machine Type Communication," in Proc. International Symposium on Wireless Communication Systems, Ilmenau, Germany, 2013, pp. 1-5.
[41]B. Kang, K.-H. Tan, H.-S. Tai, D. Tretter, and T. Q. Nguyen, “Hand segmentationfor hand-object interaction from depth map,” arXiv: 1603.02345, Mar. 2016.
[42]Roger, “Proof of convexity of linear least squares,” stackexchange.com, Sep. 2013. [Online]. Available: https://math.stackexchange.com/questions/483339/proof-of-convexity-of-linear-least-squares. [Accessed Jul. 24, 2018].
[43]C. Kong, C. Zhong, A. K. Papazafeiropoulos, M. Matthaiou and Z. Zhang, "Effect of channel aging on the sum rate of uplink massive MIMO systems," Proc. IEEE International Symposium on Information Theory (ISIT), Hong Kong, 2015, pp. 1222-1226.
[44]K. T. Truong and R. W. Heath, "Effects of channel aging in massive MIMO systems," Journal of Communications and Networks, vol. 15, no. 4, pp. 338-351, Aug. 2013.
[45]F. Glover, “Tabu Search—Part I,” ORSA J. Computing, vol. 1, no. 3, pp. 190-206, 1990.
[46]Burden, Richard L., Faires, J. Douglas, Numerical Analysis (3rd ed.), PWS Publishers, 1985.
[47]S. Paul, N. Jayakumar and S. P. Khatri, "A Fast Hardware Approach for Approximate, Efficient Logarithm and Antilogarithm Computations," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 17, no. 2, pp. 269-277, Feb. 2009.
[48]3GPP TR38.913, Study on Scenarios and Requirements for Next Generation Access Techonologies. Dec. 2017.
[49]ITU-R M.2411-0, Requirements, evaluation criteria and submission templates for the development of IMT-2020. Nov. 2017.
[50]Chiueh, T. D., & Tsai, P. Y. (2008). OFDM baseband receiver design for wireless communications. John Wiley & Sons.
[51]Korowajczuk, L. (2011). LTE, WiMAX and WLAN network design, optimization and performance analysis. John Wiley & Sons.
[52]Rappaport, T. S. (1996). Wireless communications: principles and practice (Vol. 2). New Jersey: prentice hall PTR.
[53]K. Yasami, A. Razi and A. Abedi, "Analysis of Channel Estimation Error in Physical Layer Network Coding," in IEEE Communications Letters, vol. 15, no. 10, pp. 1029-1031, October 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top