跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/14 22:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李佳臻
研究生(外文):Chia-Chen Lee
論文名稱:評價語言分析與主題擷取-網路旅遊部落格情感分析之應用
論文名稱(外文):Evaluative Language and Topic Extraction: An Aspect-based Sentiment Analysis on Online Travel Blogs
指導教授:謝舒凱謝舒凱引用關係
指導教授(外文):Shu-Kai Hsieh
口試委員:呂佳蓉洪嘉馡
口試委員(外文):Chia-Rung LuJia-Fei Hung
口試日期:2018-03-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:語言學研究所
學門:人文學門
學類:語言學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:79
中文關鍵詞:情感分析評價語言主題模型模式文法意見偵測意見擷取
相關次數:
  • 被引用被引用:0
  • 點閱點閱:447
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文研究旨在探究網路旅遊部落格之評價語言,分析其文章評價語言及情感分析,並以語言學分析為本之特徵輔以主題模型(Topic modeling)機器學習,進行以篇章為單位之評價表達內容及被評價目標之擷取(aspect-based sentiment analysis)。觀察透過語言學理論分析出之特徵,搭配機器學習法是否有助於評價之擷取。旅遊部落客表達之意見、看法及評價為讀者規劃旅遊時幫助決策進行的重要參考指標。本文利用模式文法(Pattern Grammar)歸納出特定情感極度的句構組合,只要在此文本領域出現皆呈現為正或負向極度,作為推薦與否的表達。相關該領域之特定評價用詞及評價促發詞同樣為重要之特徵。透過主題模型訓練分析篇章中可能涵蓋之主題(被評價目標類型),以及定義之被評價目標層次(aspect),擷取出分類更細緻之被評價目標面向及評價內容。本文期望作為一個評價語言分析及擷取應用之架構,適用於文本類型相似的其他領域,透過模式文法輔以主題模型訓練之混合法,擷取文章內之評價精華,並能作為意見偵測及文文章摘要等相關重要應用之基礎。
This study aims to explore evaluative language and sentiment analysis, based on online travel blogs. Aspect-based sentiment analysis is employed for document-based opinion target expression (aspect) and opinion expression extraction. Linguistic features are analyzed for extraction task, with the assist of Topic Modeling technique to examine the applicability of such hybrid method. Opinions, comments, and evaluative expressions in travel blog articles are primary sources for people to make travel decision. This study employs Pattern Grammar for analyzing domain-restricted evaluative patterns with fixed sentiment polarity. Aspect-restricted opinion expressions and opinion triggering words are also used for extraction. Latent Dirichlet Allocation is used for extracting potential topics in a given document, to assist in extracting finer-grained aspects and its corresponding opinion expressions. This study expects to serve as a framework for similar type of contents in other domains, with linguistic-based analysis such as pattern grammar, and topic modeling method to better extract opinion target expressions and opinion expressions.
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii
Chapter 1 Introduction 1
1.1 Background 1
1.2 The Aim of This Study 2
1.3 Significance 4
1.4 Organization 5
Chapter 2 Literature Review 6
2.1 The Language of Evaluation 6
2.2 Pattern Grammar 9
2.2.1 Pattern Grammar and Evaluation 13
2.3 Aspect-based Sentiment Analysis 16
2.3.1 Sentiment Analysis 17
2.3.2 Aspect-based Sentiment Analysis 22
2.3.3 ABSA Approaches 27
2.3.4 Sentiment Analysis in Online Blog Posts 33
2.4 Word2Vec 35
Chapter 3 Methodology 36
3.1 Data Preparation 37
3.1.1 Data Collection and Preprocessing 37
3.2 Feature Analysis 38
3.2.1 Evaluative Language in Travel Blog Posts 38
3.2.2 Evaluative Language with Pattern Grammar 46
3.2.3 Aspect Category Determination 48
3.2.4 Features for Aspect and Opinion Extraction 51
3.3 Experiment Design 51
3.3.1 Aspect Category E#A, OTE and OE Extraction 55
3.4 Brief Result 56
Chapter 4 Aspect-category E#A pair, OTE, OE Extraction 57
4.1 Result 57
4.1.1 Baseline: LDA topic modeling 57
4.1.2 Hybrid Method 62
4.2 Error Analysis 69
4.2.1 Aspect Category E#A Extraction 69
4.2.2 Opinion Target Expression (OTE) Extraction 69
4.2.3 Opinion Expression (OE) Extraction 70
Chapter 5 Conclusion 71
REFERENCE 74
APPENDIX 78
李啟菁. (2010). 中文部落格文章之意見分析. 臺北科技大學資訊工程系研究所學位論文, 1-44.
周胜臣, 瞿文婷, 石英子, 施询之, & 孙韵辰. (2013). 中文微博情感分析研究综述.
梁军, 柴玉梅, 原慧斌, 昝红英, & 刘铭. (2014). 基于深度学习的微博情感分析. 中文信息学报, 28(5), 155-161.
楊昌樺, & 陳信希. (2006). 以部落格文本進行情緒分類之研究. Paper presented at the 第十八屆自然語言與語音處理研討會, 2006 年 9 月 7-8 日, 新竹, 台灣.
簡之文. (2012). 部落格文章情感分析之研究. 淡江大學資訊管理學系碩士班學位論文, 1-52.
Amolik, A., Jivane, N., Bhandari, M., & Venkatesan, M. (2015). Twitter sentiment analysis of movie reviews using machine learning techniques. International Journal of Engineering and Technology, 7(6), 2038-2044.
Benamara, F., Taboada, M., & Mathieu, Y. (2017). Evaluative Language Beyond Bags of Words: Linguistic Insights and Computational Applications. Computational Linguistics, 43(1), 201-264. doi:10.1162/COLI_a_00278
Biber, D., & Finegan, E. (1988). Adverbial stance types in English. Discourse processes, 11(1), 1-34.
Bjørkelund, E., Burnett, T. H., & Nørvåg, K. (2012). A study of opinion mining and visualization of hotel reviews. Paper presented at the Proceedings of the 14th International Conference on Information Integration and Web-based Applications & Services.
Blair-Goldensohn, S., Hannan, K., McDonald, R., Neylon, T., Reis, G. A., & Reynar, J. (2008). Building a sentiment summarizer for local service reviews. Paper presented at the WWW workshop on NLP in the information explosion era.
Blei, D. M. N., Andrew Y; Jordan, Michael I. (2002). Latent dirichlet allocation. Paper presented at the Advances in neural information processing systems.
Chafe, W. (1986). Evidentiality in English conversation and academic writing. Evidentiality: The linguistic coding of epistemology, 20, 261-272.
Collins Cobuild learner''s dictionary. (1996). London: HarperCollins.
Cui, A., Zhang, H., Liu, Y., Zhang, M., & Ma, S. (2013). Lexicon-based sentiment analysis on topical chinese microblog messages Semantic Web and Web Science (pp. 333-344): Springer.
Dave, K., Lawrence, S., & Pennock, D. M. (2003). Mining the peanut gallery: Opinion extraction and semantic classification of product reviews. Paper presented at the Proceedings of the 12th international conference on World Wide Web.
Du Bois, J. W. (2007). The stance triangle. Stancetaking in discourse: Subjectivity, evaluation, interaction, 164, 139-182.
Feldman, R. (2013). Techniques and applications for sentiment analysis. Communications of the ACM, 56(4), 82-89.
Fillmore, C. J. J., Christopher R; Petruck, Miriam RL. (2003). Background to framenet. International journal of lexicography, 16(3), 235-250.
Finegan, D. B. E. (1989). Styles of stance in English: Lexical and grammatical marking of evidentiality and affect. Text - Interdisciplinary Journal for the Study of Discourse, 9(1), 93-124.
Francis, G. H., S.; Manning, E. (1998). Collins COBUILD Grammar Patterns 2: Nouns and Adjectives. London: HarperCollins.
Grice, H. P., Cole, P., & Morgan, J. (1975). Logic and conversation. 41-58.
Halliday, M. A. K. (2002). On grammar (Vol. 1): Bloomsbury Publishing.
Hofmann, T. (2000). Learning the similarity of documents: An information-geometric approach to document retrieval and categorization. Paper presented at the Advances in neural information processing systems.
Hu, M., & Liu, B. (2004). Mining opinion features in customer reviews. Paper presented at the AAAI.
Hunston, S. (2000). Pattern grammar: Wiley Online Library.
Hunston, S. (2010a). Corpus Approaches to Evaluation: Phraseology and Evaluative Language: Routledge.
Hunston, S. (2010b). Corpus approaches to evaluation: Phraseology and evaluative language: Routledge.
Jakob, N., & Gurevych, I. (2010). Extracting opinion targets in a single-and cross-domain setting with conditional random fields. Paper presented at the Proceedings of the 2010 conference on empirical methods in natural language processing.
Jin, O., Liu, N. N., Zhao, K., Yu, Y., & Yang, Q. (2011). Transferring topical knowledge from auxiliary long texts for short text clustering. Paper presented at the Proceedings of the 20th ACM international conference on Information and knowledge management.
Jo, Y., & Oh, A. H. (2011). Aspect and sentiment unification model for online review analysis. Paper presented at the Proceedings of the fourth ACM international conference on Web search and data mining.
Kaur, A., & Duhan, N. (2015). A survey on sentiment analysis and opinion mining. International Journal of Innovations & Advancement in Computer Science, 4, 107-116.
Kharde, V., & Sonawane, P. (2016). Sentiment analysis of twitter data: A survey of techniques. arXiv preprint arXiv:1601.06971.
Lee, C.-C., & Hsieh, S.-K. (2016). Evaluative Pattern Extraction for Automated Text Generation. Paper presented at the International Conference of Natural Language Generation.
Liu. (2012). Sentiment Analysis and Opinion Mining: Morgan & Claypool Publishers.
Liu, B. (2007). Web data mining: exploring hyperlinks, contents, and usage data: Springer Science & Business Media.
Liu, B., Hu, M., & Cheng, J. (2005). Opinion observer: analyzing and comparing opinions on the web. Paper presented at the Proceedings of the 14th international conference on World Wide Web.
Liu, Y., Huang, X., An, A., & Yu, X. (2007). ARSA: a sentiment-aware model for predicting sales performance using blogs. Paper presented at the Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval.
Long, C., Zhang, J., & Zhut, X. (2010). A review selection approach for accurate feature rating estimation. Paper presented at the Proceedings of the 23rd International Conference on Computational Linguistics: Posters.
Lu, B., Ott, M., Cardie, C., & Tsou, B. K. (2011). Multi-aspect sentiment analysis with topic models. Paper presented at the Data Mining Workshops (ICDMW), 2011 IEEE 11th International Conference on.
Martin, J. (2005). Blogging for dollars. FSB: Fortune Small Business, 15(10), 88-92.
Martin, J., & White, P. R. R. (2007). The Language of Evaluation: Appraisal in English: Palgrave Macmillan UK.
Martin, J. R., & White, P. R. (2003). The language of evaluation (Vol. 2): Springer.
Martino, C. (2016). Sentiment Analysis: Polarity Classification of TripAdvisor''s Hotel Reviews.
Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093-1113.
Mei, Q., Ling, X., Wondra, M., Su, H., & Zhai, C. (2007). Topic sentiment mixture: modeling facets and opinions in weblogs. Paper presented at the Proceedings of the 16th international conference on World Wide Web.
Mikolov, T. C., Kai; Corrado, Greg; Dean, Jeffrey. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
Mishne, G., & Glance, N. S. (2006). Predicting Movie Sales from Blogger Sentiment. Paper presented at the AAAI spring symposium: computational approaches to analyzing weblogs.
Moghaddam, S., & Ester, M. (2011). ILDA: interdependent LDA model for learning latent aspects and their ratings from online product reviews. Paper presented at the Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval.
Nasukawa, T., & Yi, J. (2003). Sentiment analysis: Capturing favorability using natural language processing. Paper presented at the Proceedings of the 2nd international conference on Knowledge capture.
Neethu, M., & Rajasree, R. (2013). Sentiment analysis in twitter using machine learning techniques. Paper presented at the Computing, Communications and Networking Technologies (ICCCNT), 2013 Fourth International Conference on.
Onan, A., Korukoglu, S., & Bulut, H. (2016). LDA-based Topic Modelling in Text Sentiment Classification: An Empirical Analysis. Int. J. Comput. Linguistics Appl., 7(1), 101-119.
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1–2), 1-135.
Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up?: sentiment classification using machine learning techniques. Paper presented at the Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10.
Patodkar, V. N. P. N. (2017). Sentimental Analysis on Twitter Data using Naive Bayes. IJETT, 1(2).
Popescu, A.-M., & Etzioni, O. (2007). Extracting product features and opinions from reviews Natural language processing and text mining (pp. 9-28): Springer.
Ravi, K., & Ravi, V. (2015). A survey on opinion mining and sentiment analysis: tasks, approaches and applications. Knowledge-Based Systems, 89, 14-46.
Rui, H., Liu, Y., & Whinston, A. (2013). Whose and what chatter matters? The effect of tweets on movie sales. Decision Support Systems, 55(4), 863-870.
Sauper, C., & Barzilay, R. (2013). Automatic aggregation by joint modeling of aspects and values. Journal of Artificial Intelligence Research.
Schouten, K., & Frasincar, F. (2016). Survey on aspect-level sentiment analysis. IEEE Transactions on Knowledge and Data Engineering, 28(3), 813-830.
Sinclair, J. (1995). Collins Cobuild English Dictionary: Harper collins.
Sinclair, J. (1997). Corpus evidence in language description. Paper presented at the Teaching and language corpora.
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational Linguistics, 37(2), 267-307.
Titov, I., & McDonald, R. (2008a). Modeling online reviews with multi-grain topic models. Paper presented at the Proceedings of the 17th international conference on World Wide Web.
Titov, I., & McDonald, R. (2008b). Modeling online reviews with multi-grain topic models. Paper presented at the Proceedings of the 17th international conference on World Wide Web, Beijing, China.
Tong, R. M. (2001). An Operational System for Detecting and Tracking Opinions in On-line Discussion. Paper presented at the Proceedings of the Workshop on Operational Text Classification (OTC).
Turney, P. D. (2002). Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. Paper presented at the Proceedings of the 40th annual meeting on association for computational linguistics.
Wang, J.-H., & Lee, C.-C. (2011). Unsupervised opinion phrase extraction and rating in Chinese blog posts. Paper presented at the Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social Computing (SocialCom), 2011 IEEE Third International Conference on.
Wang, M., Cao, D., Li, L., Li, S., & Ji, R. (2014). Microblog sentiment analysis based on cross-media bag-of-words model. Paper presented at the Proceedings of international conference on internet multimedia computing and service.
White, P. (2004). Subjectivity, evaluation and point of view in media discourse: Arnold.
Wiebe, J., & Riloff, E. (2005). Creating Subjective and Objective Sentence Classifiers from Unannotated Texts. Paper presented at the CICLing.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top