跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/16 21:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王嘉
研究生(外文):Chia Wang
論文名稱:利用氣溶膠噴射技術開發微型熱敏電阻於複雜表面車刀片進行製程監控應用
論文名稱(外文):A Micro-Thermistor via Aerosol Jet Technology on sophisticated geometry inserts for turning process monitoring.
指導教授:楊宏智楊宏智引用關係
口試委員:廖英志李貫銘張復瑜林威延
口試日期:2018-01-23
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:88
中文關鍵詞:氣溶膠噴射技術列印電子氧化鎳奈米銀墨水熱敏電阻直印式技術
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著現今智慧製造的概念不斷被提及,其中最重要的關鍵在於有效資料的取得,透過從製程中獲取各項資訊得以進行更高度效率的製造模式,例如產線製程設備間的資訊串流溝通(M to M)、設備預測性維護(Predictive maintenance)、製程最佳化(Process Optimization)等課題。車削加工是一項歷史悠久卻依然不斷精進的加工技術,隨著產品精度與複雜度要求以及對於成本控管概念的不斷提升,監控加工製程的議題一直是產學界關注的焦點。
本研究目標於實現「透過列印電子技術直接於複雜立體加工刀具表面製作感測元件」,以解決傳統上感測元件的安裝與製造不便性,並預期藉此透過列印電子技術密集部署感測元件,達到比以往更準確的溫度量測方式。從絕緣層的選用,利用聚酰亞胺薄膜達到貼附待測物表面低成本且快速地的絕緣層,以及製備適用於氣溶膠噴射技術的奈米氧化鎳墨水作為直印式感測器之感測層材料以及探討奈米銀墨水與氧化鎳墨水的匹配性,最後直接透過三種實際給熱的實驗驗證直印式感測器之效能。進行與商用熱電偶之升溫比較實驗,其製作於三種不同立體複雜表面上之溫度感測器之B-value計算在攝氏90度-250度可達到4310K,符合市售商用熱電偶之B-value範圍(2000K-6000K),相關度可達93.9%,驗證此種方式可以有效感測立體表面之溫度變化。研究中並探討在立體刀具上佈署多個感測器以更精確了解車刀實際溫度分佈變化,在非車削實驗(設定溫度200度)中預測刀尖穩態溫度可控制於2度誤差內;在車削實驗中實際透過列印式熱敏電阻量測之溫度與商用熱電偶之溫度變化更可達到99.66%之相關度。刀尖溫度在以往因為商用熱電偶不易安裝,蝕刻製程亦不易快速客製化立體結構之感測元件下,透過列印電子技術可大幅簡化安裝感測器與量測估算刀尖溫度之門檻,為車削製程溫度監控提供一新選擇。
Intelligent manufacturing is a new type process for high production efficiency that mentioned frequently in this few years. One of the most important things is data acquisition. Base on the data quality and quantity, some topics could be in further discussion like enhancing the communication between machine to machine, predictive maintenance and process optimization. Turning process is still a useful technology in various fabricating fields until now. Monitoring turning process is always in discussion for high machining accuracy or reducing cost.
A miniaturized thermistor sensor was produced using the Aerosol Jet printing process for temperature sensing applications. A nickel oxide nanoparticle ink with a large temperature coefficient of resistance was fabricated. The thermistor was printed with a circular NiO thin film in between the two parallel silver conductive tracks on a cutting tool insert. The printed thermistor, which has an adjustable dimension with a submillimeter scale, operates over a range of 90–250℃ sensitively (B value of ~4310 K) without hysteretic effects. Moreover, the thermistor may be printed on a 3D surface of turning inserts through the Aerosol Jet printing process, and the correlation analysis between printed thermistor and thermocouple is 93.9% that has increased capability for wide temperature-sensing applications.
第1章 緒論 1
1-1. 研究背景與動機 1
1-2. 研究目的 2
1-3. 論文架構 3
第2章 文獻回顧 4
2-1. 簡介 4
2-2. 加工品質監控方法概述 4
2-3. 以切削溫度之研究技術回顧 5
2-3.1. 溫度感測器量測技術演進 6
2-3.2. 溫度感測器製造技術演進 11
2-3.3. 氣溶膠噴射技術應用 18
2-4. 車削製程之切削溫度研究 19
2-5. 小結 21
第3章 研究方法 23
3-1. 簡介 23
3-2. 列印電子技術 24
3-2.1. 氣溶膠噴射技術 24
3-2.2. 氧化鎳奈米顆粒墨水製備 25
3-3. 驗證實驗方法 25
3-4. 溫度常數之B值計算 26
3-5. 有限元素模擬分析 27
3-6. 小結 29
第4章 實驗設計與規劃 30
4-1. 簡介 30
4-2. 直印式溫度感測器設計 32
4-3. 製作直印式溫度感測器 32
4-3.1. 陶瓷(Al2O3)鍍層及聚酰亞胺(Polyimide)薄膜之絕緣層製備 32
4-3.2. 氧化鎳奈米顆粒墨水製備 34
4-3.3. 列印電子技術-氣溶膠噴射技術 37
4-3.4. 直印式感測器製程設計 39
4-4. 直印式感測器特性實驗 40
4-4.1. 熱板實驗架構 41
4-4.2. 溫控焊槍實驗架構 44
4-4.3. 車削實驗 46
第5章 結果與討論 48
5-1. 簡介 48
5-2. 熱板實驗結果討論 48
5-2.1. 陶瓷鍍層與聚酰亞胺薄膜熱傳遞效能探討 48
5-2.2. 奈米銀墨水與氧化鎳墨水匹配性測試 52
5-2.3. 平面車刀-不同感測層厚度之溫度與電阻關係重覆性探討 54
5-2.4. 立體車刀-直印式感測器溫度與電阻關係重覆性探討 60
5-2.5. 小結 64
5-3. 溫控焊槍實驗結果討論 65
5-3.1. 模擬結果分析 65
5-3.2. 實驗結果分析 65
5-3.3. 實際量測與模擬分析之比較 69
5-3.4. 小結 70
5-4. 車削實驗結果討論 71
5-4.1. 不同溫度感測層厚度探討 71
5-4.2. 實際加工狀態監控測試 72
5-4.3. 刀具磨耗監控溫度變化探討 73
5-5. 直印式感測器佈署於平面刀具側面之研究 75
5-5.1. 直印式溫度感測器設計 75
5-5.2. 熱板實驗 76
5-6. 小結 79
第6章 結論與未來展望 80
6-1. 結論 80
6-2. 未來展望 83
文獻 84
[1] 王嘉, “利用MSE-M演算法建立回轉機械及時檢測系統.” 國立台灣科技大學機械工程學系碩士論文, 2010.
[2] Teti, R., Jemielniak, K., O’Donnell, G., Dornfeld, D. “Advanced monitoring of machining operations.” CIRP Annals - Manufacturing Technology. Vol. 59, pp. 717–739, 2010.
[3] H. Takeyama and R. Murata, "Basic Investigation of Tool Wear," American Society of Mechanical Engineers -- Transactions -- Journal of Engineering for Industry, pp. 33-38, 1963.
[4] Li, K.M., Liang, S.Y., “Modeling of Cutting Temperature in Near Dry Machining.” Journal of Manufacturing Science and Engineering, vol. 128, pp. 416–424, 2005.
[5] Li, K.M., Wang, C., “An improved remote sensing technique for estimating tool–chip interface temperatures in turning.” Journal of Materials Processing Technology, vol. 213, pp. 1772– 1781, 2013.
[6] M. C. Shaw, "Metal Cutting Principles," 1984.
[7] M. A. Davies, T. Ueda, R. M''Saoubi, B. Mullany, and A. L. Cooke, "On The Measurement of Temperature in Material Removal Processes," CIRP Annals - Manufacturing Technology, vol. 56, pp. 581-604, 2007.
[8] M. P. Lipman, B. E. Nevis, and G. E. Kane, "Remote Sensor Method for Determining Average Tool-Chip Interface Temperatures in Metal Cutting," American Society of Mechanical Engineers -- Transactions -- Journal of Engineering for Industry, pp. 333-338, 1967.
[9] S. B. Moshref, "Cutting Temperature as an Approach to On-Line Measurement of Tool Wear," SME Technical Paper (Series) IQ, 1980.
[10] N. A. Abukhshim, P. T. Mativenga, and M. A. Sheikh, "Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining," International Journal of Machine Tools and Manufacture, vol. 46, pp. 782-800, 2006.
[11] Antonio Feteira, “Negative temperature coefficient resistance (NTCR) ceramic thermistors: An industrial perspective,” vol. 92(5), pp. 967–983, 2009.
[12] “Practical Temperature Measurements”, from https://www.omega.co.uk/temperature/Z/pdf/z019-020.pdf.
[13] “熱電偶的基本原理與設計要點”, from https://www.eettaiwan.com/news/article/20161222TA31-Thermocouples-Basic-principles-and-design-essentials.
[14] Patricia Nieva, Haruna Tada, Paul Zavracky, George Adams, Ioannis Miaoulis, Peter Wong, “Mechanical and Thermophysical Properties of Silicon Nitride Thin Films at High Temperatures Using In-Situ Mems Temperature Sensors,” Materials research society, vol. 546, 1998.
[15] S. Scott, D. Peroulis, “A Capacitively-Loaded MEMS Slot Element for Wireless Temperature Sensing of up to 300C,” Department of Electrical and Computer Engineering Faculty Publications, IMS, pp. 1161-1164, 2009.
[16] Ali Basti, Toshiyuki Obikawa, Jun Shinozuka, “Tools with built-in thin film thermocouple sensors for monitoring cutting temperature,” International Journal of Machine Tools and Manufacture, vol. 47(5), pp. 792-798, 2007.
[17] Dirk Biermann, Marko Kirschner, Klaus Pantke, Wolfgang Tillmann, Jan Herper, “New coating systems for temperature monitoring in turning processes,” Surface and Coatings Technology, vol. 215, pp. 376-380, 2013.
[18] S.Y.Xiao, L.F.Che, X.X.Li, Y.L.Wang, “A novel fabrication process of MEMS devices on polyimide flexible substrates,” Microelectronic Engineering, vol. 85(2), pp. 452-457, 2008.
[19] K.K.B. Hon, L.Li, I.M.Hutchings, “Direct writing technology—Advances and developments,” CIRP Annals, vol. 57(2), pp. 601-620, 2008.
[20] Hue P. Le, “Progress and Trends in Ink-jet Printing Technology,” Journal of Imaging Science and Technology, vol. 42, pp. 49-62, 1998.
[21] R. N. Mills, ESIJET printing technology, in Proc. IS&T’s NIP 12: Int’l. Congress on Digital Printing Technologies, IS&T, Springfield, VA, 1996, pp. 262–266
[22] S. A. Elrod, B. T. Khuri-Yakub and C. F. Quake, (Xerox), Stabilization of the free surface of a liquid, U.S. Patent 5,629,724 (1997).
[23] Marcus Maiwald, Christian Werner, Volker Zo¨llmer and Matthias Busse, “INKtelligent printing for sensorial applications,” Sensor Review, vol. 30, pp. 19-23, 2010
[24] Cost Effective Additive Material Deposition. Available online: http://www.hahn-schickard.de (accessed on 4 May 2015).
[25] Courbat, J., Kim, Y.B., Briand, D., de Rooij, N.F., “Inkjet printing on paper for the realization of humidity and temperature sensors.,” In Proceedings of the 16th International Conference on Solid-State Sensors, Actuators and Microsystems, Beijing, China, 5–9 June 2011.
[26] De Kong, Linh T. Le, Yue Li, James L. Zunino, Woo Lee, “Temperature-Dependent Electrical Properties of Graphene Inkjet Printed on Flexible Materials.,” Langmuir, vol. 28(37), pp 13467–13472, 2012.
[27] Da Zhao, Tao Liu, Jin Gyu Park, Mei Zhang, Jen-Ming Chen, Ben Wang, “Conductivity enhancement of aerosol-jet printed electronics by using silver nanoparticles ink with carbon nanotubes.,” Microelectronic Engineering, vol. 96, pp. 71-75, 2012.
[28] Chun-Chih Huang, Zhen-Kai Kao, and Ying-Chih Liao, “Flexible Miniaturized Nickel Oxide Thermistor Arrays via Inkjet Printing Technology.,” ACS Applied Materials & Interfaces, vol. 5(24), pp 12954–12959, 2013.
[29] Hedges M (2008) Private communication, Neotech.
[30] N. Abukhshim, P. Mativenga, and M. Sheikh, "Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining," International Journal of Machine Tools and Manufacture, vol. 46, pp. 782-800, 2006.
[31] D.O’Sullivan, M.Cotterell, “Temperature measurement in single point turning.,” Journal of Materials Processing Technology, vol. 118, pp. 301-308, 2001.
[32] “Mechanics of Machining” Version 2, Kharagpur.
[33] Abdil Kus, Yahya Isik, M. Cemal Cakir, Salih Coşkun, Kadir Özdemir, “Thermocouple and Infrared Sensor-Based Measurement of Temperature Distribution in Metal Cutting.,” Sensors (Basel), vol. 15(1), pp. 1274–1291, 2015.
[34] Grover, M. P., “Introduction to fundamentals of manufacturing systems,” John wiles Publications, 5th, Delhi, pp.509, 2010,
[35] D. A. Stephenson, "Assessment of steady-state metal cutting temperature models based on simultaneous infrared and thermocouple data," Journal of Engineering for Industry, vol. 113, pp. 121-128, 1991.
[36] Roozbeh (Ross) Salary, Jack P. Lombardi, M. Samie Tootooni, Ryan Donovan, Prahalad K. Rao, Mark D. Poliks, “In situ sensor-based monitoring and computational fluid dynamics (CFD) modeling of aerosol jet printing (ajp) process.,” ASME 2016 11th International Manufacturing Science and Engineering Conference, vol. 2, 2016.
[37] Bruce King, Mike Renn, “Aerosol jet® direct write printing for mil-aero electronic applications.,” 2014.
[38] Horteis M, Mette A, Richter PL, Fidorra F, Glunz SW, “Further Progress in Metal Aerosol Jet Printing for Front Side Metallization of Silicon Solar Cells.,” 22nd European Photovoltaic Solar Energy Conference.
[39] Kang, J.E. Ryu, H., Han, G., Choi, J.J., Yoon, W.H., Hahn, B.D., Kim, J.W., Ahn, C.W., Choi, J.H., Park. D.S. “LaNiO3 conducting particle dispersed NiMn2O4 nanocomposite NTC thermistor thick films by aerosol deposition.,” Journal of Alloys and Compounds. Vol. 534, pp. 70–73, 2012.
[40] Korloy Cutting Tools. Available online: https://www.cutwel.co.uk/Korloy-Cutting-Tools (accessed on 1 April 2014).
[41] “Resistivity Of Aluminum Oxide”, from https://hypertextbook.com/facts/2006/EuniceHuang.shtml.
[42] DEC Kapton “summary of properties”, from http://www.datasheetarchive.com/whats_new/3604bd676ecc876110dc482bae3e6969.html.
[43] 國立台灣大學工學院暨電機資訊學院-奈米機電系統研究中心, http://nems.ntu.edu.tw/equipment_con.php?lang=zh&pk=20&idept=4#
[44] “Electron-beam physical vapor deposition,” from https://en.wikipedia.org/wiki/Electron-beam_physical_vapor_deposition.
[45] “AJ-300 user manual”, Optomec.
[46] Dongjo Kim, Jooho Moonz, “Highly Conductive Ink Jet Printed Films of Nanosilver Particles for Printable Electronics.,” Electrochemical and Solid-State Letters, vol. 8(11), J30-J33, 2005.
[47] Sang Hwa Yoon, Jun Ho Lee, Pyoung Chan Lee, Jae Do Nam, Hyun-Chul Jung, Yong Soo Oh, Tae Sung Kim, Young kwan Lee, “Sintering and Consolidation of Silver Nanoparticles Printed on Polyimide Substrate Films.,” Macromolecular Research, vol. 17(8), pp. 568-574, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top