跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/21 13:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:方子瑄
研究生(外文):Tzu-Hsuan Fang
論文名稱:探討脫氯對模擬建物自來水配管生物穩定性之影響
論文名稱(外文):The Impact of Point-of-Entry Dechlorination on Biological Stability in Simulated Premise Plumbing System
指導教授:童心欣
指導教授(外文):Hsin-hsin Tung
口試委員:林逸彬陳佩貞簡義杰
口試委員(外文):Yi-Pin LinPei-Jen ChenI-Chieh Chien
口試日期:2018-07-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:68
中文關鍵詞:自來水脫氯消毒副產物生物穩定性建物配管總異營菌數生物可利用有機碳
相關次數:
  • 被引用被引用:0
  • 點閱點閱:398
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
供應穩定且安全的飲用水在現代社會是相當重要的議題。當自來水進入建物配管中,時常停滯的條件使餘氯與水中有機物反應出許多消毒副產物。尤其在台灣的公寓社區多數會使用水塔,因而增加了自來水在建物配管的停留時間。為了減少消毒副產物對人體暴露的風險,許多住戶使用全戶型脫氯淨水裝置去除水中的餘氯。本研究目標將探討脫氯之行為對於自來水生物穩定性之影響。研究期間定期於模擬間接供水系統採樣並分析水質,並比較脫氯前後水質之差異。總異營菌數(HPC)與生物可利用有機碳(AOC)為本次研究採用的生物穩定性指標參數。研究結果顯示脫氯後,系統出流水之消毒副產物濃度下降但水中總異營菌數顯著增加至10^5 CFU/ml。然而出流水之生物可利用有機碳降低至可抑制微生物再生長之閾值濃度(< 10 μg/L),因此出流水之總異營菌數於一個月後達到穩態而非持續上升。最後利用進流水之生物可利用有機碳計算之理論總異營菌數與實際檢測值相近,證明了出流水之總異營菌數之增加主要源自於進流水中的生物可利用有機碳。總結若是進流水之生物可利用有機碳高於閾值濃度,於建物配管前脫氯便會衝擊飲用水之生物穩定性。
The biological stability of drinking water is a crucial part for public health. In Taiwan, indirect water supply with extra water storage tank increases hydraulic retention time in premise plumbing and may increase disinfection byproduct (DBP) formation. Therefore, dechlorination devices are commonly used to reduce chlorine residual. The objective of this research was to explore the impact of point-of-entry dechlorination device on biological stability. A simulation of indirect water supply system was established and the water quality parameters were sampled and analyzed. Heterotrophic plate count (HPC) and assimilable organic carbon (AOC), carbon source directly support the microbial regrowth, are the main methods to access the biological stability. The results show that concentrations of DBPs in effluent were decreased and HPC were significantly increased to 10^5 CFU/ml after dechlorination. AOC in the effluent reached to the threshold of the nutrient scarcity (< 10 μg/L) that resulted in stable effluent HPC after one month. The theoretical HPC, calculated from the consumed AOC, was similar to the actual detected value. The result indicates that high amount of HPC in effluent is controlled by AOC in influent. To sum up, point-of-entry dechlorination could result in biological instability if AOC in influent is above the threshold of the nutrient scarcity.
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Background 1
1.2 Objective and Hypothesis 2
Chapter 2 Literature review 3
2.1 Chlorination and formation of disinfection byproducts (DBPs) 3
2.2 Biological stability of drinking water 5
2.3 Involvement of chlorine in premise plumbing 7
2.3.1 Definition of premise plumbing 7
2.3.2 DBPs dynamics in premise plumbing 7
2.3.3 Microbial regrowth in premise plumbing 8
2.4 Dechlorination device 10
Chapter 3 Experimental methods 11
3.1 Experimental framework 11
3.2 Experimental equipment 13
3.2.1 Dechlorination cartridge 13
3.2.2 Indirect water supply system simulation 13
3.2.3 Equipment and preparation for sampling 14
3.3 Measurements of basic water parameter 16
3.3.1 Temperature and pH value 16
3.3.2 Residual chlorine 16
3.4 Dissolved Organic Carbon analysis 17
3.5 Sulfate analysis 18
3.6 DBPs extraction and analysis 19
3.6.1 Trihalomethanes (THMs) 19
3.6.2 Haloacetic acids (HAAs) 19
3.7 Measurements of biological parameter 22
3.7.1 Heterotrophic plate count (HPC) 22
3.7.2 Assimilable organic carbon (AOC) 22
3.8 Statistical analysis 24
Chapter 4 Results and discussion 25
4.1 Water quality parameters during the sampling period 25
4.1.1 Temperature and pH value 25
4.1.2 Residual chlorine 27
4.1.3 DOC 29
4.1.4 Sulfate 30
4.1.5 DBPs 32
4.1.6 HPC 37
4.1.7 AOC 40
4.2 Correlation analysis 43
4.3 Calculation of theoretical HPC 50
4.4 Impact of storage tank on water quality 52
4.5 Impact of dechlorination on water quality 53
Chapter 5 Conclusions and recommendations 55
5.1 Conclusions 55
5.2 Recommendations for future study 56
REFERENCE 57
APPENDIX 61
Al-Jasser, A. (2007). Chlorine decay in drinking-water transmission and distribution systems: Pipe service age effect. Water research, 41(2), 387-396.
Allion, A., Lassiaz, S., Peguet, L., Boillot, P., Jacques, S., Peultier, J., & Bonnet, M.-C. (2011). A long term study on biofilm development in drinking water distribution system: comparison of stainless steel grades with commonly used materials. Revue de Métallurgie–International Journal of Metallurgy, 108(4), 259-268.
APHA. (2005). Standard Methods for the Examination of Water & Wastewater, (21 ed.): American Public Health Association, Washington, DC.
Basu, O. D., & Dorner, S. M. (2010). Potential aquatic health impacts of selected dechlorination chemicals. Water Quality Research Journal, 45(3), 353-363.
Chien, C., Kao, C., Chen, C., Dong, C., & Wu, C. (2008). Application of biofiltration system on AOC removal: column and field studies. Chemosphere, 71(9), 1786-1793.
Chowdhury, S. (2012). Heterotrophic bacteria in drinking water distribution system: a review. Environmental monitoring and assessment, 184(10), 6087-6137.
Dion-Fortier, A., Rodriguez, M. J., Sérodes, J., & Proulx, F. (2009). Impact of water stagnation in residential cold and hot water plumbing on concentrations of trihalomethanes and haloacetic acids. Water research, 43(12), 3057-3066.
Donlan, R., Pipes, W., & Yohe, T. (1994). Biofilm formation on cast iron substrata in water distribution systems. Water research, 28(6), 1497-1503.
Escobar, I. C., Randall, A. A., & Taylor, J. S. (2001). Bacterial growth in distribution systems: effect of assimilable organic carbon and biodegradable dissolved organic carbon. Environmental Science & Technology, 35(17), 3442-3447.
Fair, G. M., Morris, J. C., Lu Chang, S., Weil, I., & Burden, R. P. (1948). The behavior of chlorine as a water disinfectant. Journal (American Water Works Association), 40(10), 1051-1061.
Farley, D. K. (1999). U.S. Patent No. 5,914,043. Washington, DC: U.S. Patent and Trademark Office.
Flemming, H.-C. (2002). Biofouling in water systems–cases, causes and countermeasures. Applied microbiology and biotechnology, 59(6), 629-640.
Hammes, F., Broger, T., Weilenmann, H. U., Vital, M., Helbing, J., Bosshart, U., Huber, P., Peter Odermatt, R., & Sonnleitner, B. (2012). Development and laboratory‐scale testing of a fully automated online flow cytometer for drinking water analysis. Cytometry Part A, 81(6), 508-516.
Hammes, F. A., & Egli, T. (2005). New method for assimilable organic carbon determination using flow-cytometric enumeration and a natural microbial consortium as inoculum. Environmental Science & Technology, 39(9), 3289-3294.
Hoefel, D., Monis, P., Grooby, W., Andrews, S., & Saint, C. P. (2005). Profiling bacterial survival through a water treatment process and subsequent distribution system. Journal of applied microbiology, 99(1), 175-186.
Kappler, U., & Dahl, C. (2001). Enzymology and molecular biology of prokaryotic sulfite oxidation. FEMS microbiology letters, 203(1), 1-9.
Kim, J., Lee, S., Xu, S., Akiba, M., Nomura, M., Chiba, N., Nakano, K., & Nishimura, O. (2006). Assimilable organic carbon formation from algogenic organic matter and its variation by chlorination. Water Science and Technology: Water Supply, 6(2), 239-244.
LeChevallier, M. W., Shaw, N. E., Kaplan, L. A., & Bott, T. L. (1993). Development of a rapid assimilable organic carbon method for water. Applied and Environmental Microbiology, 59(5), 1526-1531.
Lee, J., Lohani, V. K., Dietrich, A. M., & Loganathan, G. (2012). Hydraulic transients in plumbing systems. Water Science and Technology: Water Supply, 12(5), 619-629.
Levesque, S., Rodriguez, M. J., Serodes, J., Beaulieu, C., & Proulx, F. (2006). Effects of indoor drinking water handling on trihalomethanes and haloacetic acids. Water research, 40(15), 2921-2930.
Liang, L., & Singer, P. C. (2003). Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water. Environmental Science & Technology, 37(13), 2920-2928.
Liu, X., Wang, J., Liu, T., Kong, W., He, X., Jin, Y., & Zhang, B. (2015). Effects of assimilable organic carbon and free chlorine on bacterial growth in drinking water. PLoS One, 10(6), e0128825.
Lu, P., Zhang, X., Zhang, C., Niu, Z., Xie, S., & Chen, C. (2014). Biostability in distribution systems in one city in southern China: Characteristics, modeling and control strategy. Journal of Environmental Sciences, 26(2), 323-331.
Lu, W., Kiéné, L., & Lévi, Y. (1999). Chlorine demand of biofilms in water distribution systems. Water research, 33(3), 827-835.
Lykins, B. W. (2018). Point-of-Use/Point-of-Entry for Drinking Water Treatment: 0: CRC Press.
McFeters, G. A., LeChevallier, M. W., Singh, A., & Kippin, J. S. (1986). Health significance and occurrence of injured bacteria in drinking water. Water Science and technology, 18(10), 227-231.
Nescerecka, A., Rubulis, J., Vital, M., Juhna, T., & Hammes, F. (2014). Biological instability in a chlorinated drinking water distribution network. PLoS One, 9(5), e96354.
Pieri, P., Andra, S. S., Charisiadis, P., Demetriou, G., Zambakides, N., & Makris, K. C. (2014). Variability of tap water residual chlorine and microbial counts at spatially resolved points of use. Environmental Engineering Science, 31(4), 193-201.
Polanska, M., Huysman, K., & Van Keer, C. (2005). Investigation of assimilable organic carbon (AOC) in flemish drinking water. Water research, 39(11), 2259-2266.
Prest, E., Hammes, F., van Loosdrecht, M., & Vrouwenvelder, J. S. (2016). Biological stability of drinking water: controlling factors, methods, and challenges. Frontiers in Microbiology, 7, 45.
Prest, E., Weissbrodt, D., Hammes, F., van Loosdrecht, M., & Vrouwenvelder, J. S. (2016). Long-term bacterial dynamics in a full-scale drinking water distribution system. PLoS One, 11(10), e0164445.
Ramseier, M. K., Peter, A., Traber, J., & von Gunten, U. (2011). Formation of assimilable organic carbon during oxidation of natural waters with ozone, chlorine dioxide, chlorine, permanganate, and ferrate. Water research, 45(5), 2002-2010.
Reasoner, D. J., & Geldreich, E. (1985). A new medium for the enumeration and subculture of bacteria from potable water. Applied and Environmental Microbiology, 49(1), 1-7.
Richardson, S. D. (2002). The role of GC-MS and LC-MS in the discovery of drinking water disinfection by-products. Journal of Environmental Monitoring, 4(1), 1-9.
Rittmann, B. E., & Snoeyink, V. L. (1984). Achieving biologically stable drinking water. Journal‐American Water Works Association, 76(10), 106-114.
Rook, J. J. (1976). Haloforms in drinking water. Journal (American Water Works Association), 168-172.
Rozelle, L. T. (1987). Point‐of‐Use and Point‐of‐Entry Drinking Water Treatment. Journal‐American Water Works Association, 79(10), 53-59.
Silhan, J., Corfitzen, C. B., & Albrechtsen, H.-J. (2006). Effect of temperature and pipe material on biofilm formation and survival of Escherichia coli in used drinking water pipes: a laboratory-based study. Water Science and technology, 54(3), 49-56.
Srinivasan, S., Harrington, G. W., Xagoraraki, I., & Goel, R. (2008). Factors affecting bulk to total bacteria ratio in drinking water distribution systems. Water research, 42(13), 3393-3404.
Sun, H., Shi, B., Lytle, D. A., Bai, Y., & Wang, D. (2014). Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system. Environmental Science: Processes & Impacts, 16(3), 576-585.
Tung, H.-h., & Xie, Y. F. (2009). Association between haloacetic acid degradation and heterotrophic bacteria in water distribution systems. Water research, 43(4), 971-978.
Ultee, A., Souvatzi, N., Maniadi, K., & König, H. (2004). Identification of the culturable and nonculturable bacterial population in ground water of a municipal water supply in Germany. Journal of applied microbiology, 96(3), 560-568.
Vahala, R., Ala-Peijari, T., Rintala, J., & Laukkanen, R. (1998). Evaluating ozone dose for AOC removal in two-step GAC filters. Water Science and technology, 37(9), 113-120.
van der Kooij, D. (1990). Assimilable organic carbon (AOC) in drinking water Drinking water microbiology (pp. 57-87): Springer.
van der Kooij, D. (1992). Assimilable organic carbon as an indicator of bacterial regrowth. Journal (American Water Works Association), 57-65.
van der Kooij, D. (2003). Assimilable organic carbon (AOC) in treated water: determination and significance. Encyclopedia of environmental microbiology.
van der Kooij, D., & Hijnen, W. (1985). Regrowth of bacteria on assimilable organic carbon in drinking water. Journal français d’hydrologie, 16(3), 201-218.
van der Kooij, D., Visser, A., & Hijnen, W. (1982). Determining the concentration of easily assimilable organic carbon in drinking water. Journal (American Water Works Association), 540-545.
van der Wende, E., Characklis, W. G., & Smith, D. (1989). Biofilms and bacterial drinking water quality. Water research, 23(10), 1313-1322.
van der Wielen, P. W., & van der Kooij, D. (2010). Effect of water composition, distance and season on the adenosine triphosphate concentration in unchlorinated drinking water in the Netherlands. Water research, 44(17), 4860-4867.
Van Nevel, S., Koetzsch, S., Proctor, C. R., Besmer, M. D., Prest, E. I., Vrouwenvelder, J. S., Knezev, A., Boon, N., & Hammes, F. (2017). Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring. Water research, 113, 191-206.
Vreeburg, I. J., & Boxall, J. (2007). Discolouration in potable water distribution systems: A review. Water research, 41(3), 519-529.
Wang, J.-J., Liu, X., Ng, T. W., Xiao, J.-W., Chow, A. T., & Wong, P. K. (2013). Disinfection byproduct formation from chlorination of pure bacterial cells and pipeline biofilms. Water research, 47(8), 2701-2709.
Wang, Z., Choi, O., & Seo, Y. (2013). Relative contribution of biomolecules in bacterial extracellular polymeric substances to disinfection byproduct formation. Environmental Science & Technology, 47(17), 9764-9773.
WHO. (2014). Water safety in distribution systems. Retrieved from http://www.who.int/water_sanitation_health/publications/WSH-distribution_system-20141114.pdf
Zhang, W., & DiGiano, F. A. (2002). Comparison of bacterial regrowth in distribution systems using free chlorine and chloramine: a statistical study of causative factors. Water research, 36(6), 1469-1482.
Zhang, W., Miller, C. T., & DiGiano, F. A. (2004). Bacterial regrowth model for water distribution systems incorporating alternating split-operator solution technique. Journal of Environmental Engineering, 130(9), 932-941.
Zheng, M., He, C., & He, Q. (2015). Fate of free chlorine in drinking water during distribution in premise plumbing. Ecotoxicology, 24(10), 2151-2155.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊