跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 20:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉怡
研究生(外文):Yi Liu
論文名稱:以模擬實驗探討人體內源性有機前質消毒副產物生成趨勢
論文名稱(外文):Bench scale study for assessment of DBPs formation from human endogenous organic precursors
指導教授:王根樹王根樹引用關係
指導教授(外文):Gen-Shuh Wang
口試委員:林財富童心欣
口試委員(外文):Tsair-Fuh LinHsin-Hsin Tung
口試日期:2017-12-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:101
中文關鍵詞:高級氧化UV/H2O2UV/Cl2尿液汗液消毒副產物
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
加氯消毒是游泳池水質管理中重要的步驟,其主要目的在消滅水體中的微生物或是降低其活性,以確保泳客不會因為水體中致病微生物而引發水媒疾病疫情。衛生福利部疾病管制署提出游泳池的自由有效餘氯建議值應在百萬分之1到3之間,而臺北市衛生營業管理規則也要求台北市的游泳池自由餘氯濃度應該要維持在百萬分之0.3到0.7之間,以維持良好的殺菌效果。

然而,游泳池中泳客所釋放出的有機質 (例如: 汗液、尿液、皮屑、頭髮、保養品等物質)可能跟消毒劑反應而產生消毒副產物,包括三鹵甲烷 (Trihalomethanes, THMs)、鹵乙酸(Haloacetic acids, HAAs)、鹵乙氰 (Haloacetonitriles, HAN)、鹵酮 (Haloketone, HKs)等物質。雖然目前國內外已有研究針對游泳池做實場採樣調查,但是游泳池池水中所累積的組成物質極為複雜,所以實場採樣的結果較難釐清個別來源內源性有機前質的消毒副產物生成特性,以及它們經過不同處理後的處理效果。

本研究採取實驗室模擬的方法,選用了泳池中最主要的內源性有機質,包括尿液及汗液,以代表持續在游泳池中釋放的有機前質。另外也以臭氧、UV/H2O2、UV/Cl2三種前處理方法評估其對於內源性有機消毒副產物前質的降解效果。其中臭氧為一般游泳池實場常見的消毒方法; 而UV/H2O2相關的研究主要應用在飲用水或汙水相關研究裡,截至目前為此以UV/Cl2及UV/H2O2前處理方法對於游泳池水質改善應用的相關研究仍不充足,所以本研究一併將其納入以比較將其應用於游泳池水的優劣,提供未來游泳池水質控制以及消毒副產物前處理技術的背景資訊。
研究結果顯示,隨著內源性有機前質不斷排放到持續加氯的水體裡,不僅會使水中三鹵甲烷、鹵乙酸、鹵乙氰的濃度不斷累積,也會使得水體需氯量大幅增加而引發不揮發性的消毒除副產物 - 鹵乙酸的生成潛勢上升。另外,臭氧、UV/H2O2、UV/Cl2對於汗液內的三鹵甲烷的生成均有良好的控制效果,但僅有UV/H2O2可以同時降低汗液及尿液的三鹵甲烷及鹵乙酸生成潛能,其對水中總有機碳的礦化效果也較顯著。
Disinfection is one of the main treatment processes for recirculating water in swimming pools. The main purpose of disinfection is to kill or inactive pathogens and to protect the public from waterborne diseases. On the other hand, some disinfectants such as chlorine can provide necessary residuals in treated water and prevent microbial regrowth in treated water. The concentration of free residual chlorine for swimming pools in Taipei City should be between 0.3 ~ 0.7 mg/L according to the current sanitation regulation of Center of Disease Control of Taipei.

However, various organic precursors in water could react with chlorine and produce some disinfection by-product (DBPs) including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), haloketones (HKs), halonitromethanes (HNMs) and so on. Nowadays, there is still unclear concerning how different sources of organic endogenous matter from human affect the DBPs formation; therefore how to promote the treatment efficiencies to reduce the DBPs formation via different treatments have been an issue for management of swimming pool water qualities. This study set up a bench-scale system for assessment of DBPs formation potentials of human endogenous organic matter after ozonation, UV/H2O2 and UV/Cl2 pretreatments. Urine and perspiration were selected to represent the major human endogenous organics in this study, since these organics have been considered as the main organic compositions in swimming pools and spas. Although ozonation is widely used in swimming pools, the studies of UV/H2O2 and UV/Cl2 in swimming pools water are still limited. The three AOP treatments were conducted to elucidate their effects on water quality controls and DBPs reductions in order to provide more background knowledge for the swimming pool managements.

The results of this study showed that, continuous addition of body fluids into reaction chamber would result in more and more productions of THMs, HAAs and HANs in swimming pool water. Moreover, the accumulations of swimmer’s body fluids not only result in increasing of DBPs, but also enhance the chlorine demands and much higher DBPs formations in swimming pool water. In addition, ozonation, UV/Cl2 and UV/H2O2 treatments can degrade the organic precursor of DBPs in perspiration, and make the concentrations of DBPs decreased eventually. The results also showed that only the UV/H2O2 treatment can lower down the DBPs formations for both the perspiration and urine; however, both UV/Cl2 and UV/H2O2 methods need to be operated for a sufficient contact time to prevent the DBPs rise in water in the beginning stage of the oxidation treatments.
中文摘要 I
Abstract III
Contents V
List of Figures VIII
List of Tables X
Chapter 1 Introduction 1
1.1 Background of study 1
1.2 Objectives 2
Chapter 2 Literature Review 3
2.1 Circulation systems of general swimming pools 3
2.2 Organic compositions in swimming pools 4
2.2.1 Main pollutants contributed from swimmers in swimming pools 4
2.2.2 Organic chemical composition of human endogenous precursors 6
2.3 Factors related to DBPs formation in pool water 7
•Organic precursors 7
• Temperature 8
• pH 8
• Pool types 9
• Pool operation and management 9
2.4 Water treatment processes 10
2.4.1 Advanced oxidation processes (AOPs) in swimming pools 10
• The mechanism of ozonation 10
• The mechanism of UV/Chlorine 12
• The mechanism of UV/H2O2 13
2.5 Disinfection by-products in swimming pools 14
2.5.1 Health impact of DBPs in swimming pool 16
2.5.2 THMs, HAAs, and other DBPs in swimming pool 18
Chapter 3 Material and Methods 20
3.1 Study design 20
3.1.1 Research framework 20
3.1.2 Study equipment and experimental processes 26
• Continuous organics accumulation experiments 26
• Ozonation system 28
• UV/Chlorine oxidation system 30
• UV/H2O2 oxidation system 32
3.2 Sample preparation and characteristics 34
3.3 Chemicals analysis 38
3.3.1 DBPs formation tests 38
• 7-day DBPs formation potential tests (DBPFP tests) 38
• DBPs formation dynamics tests 39
3.1.2 Sample analysis 41
• THMs, HANs, HKs, and TCNM analysis 41
• HAAs analysis 44
• Organic carbon analysis 47
• Total nitrogen (TN) analysis 49
• NH4+-N analysis 50
• Nitrates and Nitrites (NO3- -N and NO2- -N) analysis 51
• TON analysis 52
Chapter 4 Results and Discussions 53
4.1 Simulation of continuous organics accumulation in swimming pools 53
4.1.1 Organic matter accumulation and chlorine consumption 53
4.1.2 Disinfection by-products formations in the organic matter accumulation experiments 56
4.2 Comparisons of different AOP treatments of human endogenous organic precursors 59
4.2.1 Effects of AOPs on degradations of organic matters 59
4.2.2 Effects of AOPs on degradations of nitrogen species 62
4.2.3 Effects of AOPs on the UV spectrums of the organic matters 65
4.2.4 Effects of AOPs on the EEM spectrums of the organic matters 67
4.3 Comparing the effects of AOP treatments on DBPs precursors 73
4.3.1 Results of DBPFP tests and chlorine demands 73
4.3.2 Dynamics of DBPs formation and chlorine demands 80
4.4 Comparisons of treatment efficiencies with three different treatments 90
Chapter 5 Conclusions 94
Appendix 96
Reference 98
Adin, A., Katzhendler, J., Alkaslassy, D., Rav-Acha, C. (1991). Trihalomethane formation in chlorinated drinking water: a kinetic model. Water Research, 25(7), 797–805.

Chen, W., Westerhoff, P., Leenheer, J. A. (2003). Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science and Technology, 37, 5701-5710.

Chowdhury, S., Alhooshani, K., Karanfil, T. (2014). Disinfection byproducts in swimming pool: Occurrences, implications and future needs. Water Research, 53, 68-109.

Deutsches Institut für Normung. (2012). Treatment of water of swimming pools and baths - Part 1: General requirements. DIN 19643-1:2012-11.

Florentin, A., Hautemaniére, A., Hartemann, P. (2011). Health effects of disinfection by-products in chlorinated swimming pools. International Journal of Hygiene and Environmental Health, 214(6), 461-469.

French Agency for Food, Environmental and Occupational Health & Safety (ANSES). (2012). Évaluation des risques sanitaires liés aux piscines. Mars 2012. Édition scientifique.http://nosobase.chulyon.fr/recommandations/anses/2010_piscine_anses_maj2012.pdf.

Glezer, V., Harris, B., Tal, N., Iosefzon, B., Lev, O. (1999). Hydrolysis of haloacetonitriles: linear free energy relationship, kinetics and products. Water Research, 33 (8), 1938–1948.

Guidance on the biocidal products regulation, volume 5: guidance on disinfection by-Products. (2017). European Chemicals Agency (ECHA).

Hansen, K.M., Albrechtsen, H. J., Andersen, H.R. (2013). Optimal pH in chlorinated swimming pools—balancing formation of by-products. Water Health, 11 (3), 465–472.

Huei-Wen, C., Chia-Yang, C., Gen-Shuh, W. (2010).The influence of UV/H2O2 on organic carbon and nitrogen precursors and disinfection by-products formation in drinking water. Environmental Engineering Science, 5, 423-430.

Judd, S. J., Black, S. H. (2002). Disinfection by-product formation in swimming pool water: A simple mass balance. Water Research, 34(5), 1611-1619.

Judd, S.J., Bullock, G. (2003). The fate of chlorine and organic materials in swimming pools. Chemosphere, 51(9), 869-879.

Judd, S.J., Jeffrey, J.A. (1995). Trihalomethane formation during swimming pool water disinfection using hypobromous and hypochlorous acids. Water Research, 29(4), 1203-1206.

Kanan, A., Karanfil, T. (2011). Formation of disinfection by-product in indoor water: The contribution from filling water natural organic matter and swimmer body fluids. Water Research, 45(2), 926-932.

Kim, H., Shim, J., Lee, S. (2002). Formation of disinfection by-product in chlorinated swimming pool water. Chemosphere, 46(1), 123-130.

Kirchmann, H., Pettersson, S. (1995). Human urine - Chemical composition and fertilizer use efficiency. Fertilizer Research, 40, 149-154.

LaKind, J.S., Richardson, S.D., Blount, B.C. (2010). The good, the bad, and the volatile: can we have both healthy pools and healthy people? Environmental Science and Technology, 44, 3205-3210.

Legrini, O., Oliveros, E., Braun, A. M. (1993). Photochemical Processes for Water Treatment. Chemical Reviews, 93, 671-698.

Li, T., Jiang, Y., An, X.Q., Liu, H.J., Hu, C., Qu, J.H. (2016). Transformation of humic acid and halogenated byproduct formation in UV-chlorine processes. Water Research, 102, 421-427.

Liu, Y.Y. (2015). Potential effects of disinfection method on disinfection by-product (DBPs) formation in swimming pool water. Graduate Institute of Environmental Health, College of Public Health, National Taiwan University.

Liu, W., Cheung, L.-M., Yang, X., Shang, C. (2006). THM, HAA and CNCl formation from UV irradiation and chlor (am) ination of selected organic waters. Water Research, 40(10), 2033–2043.

Lo, T.N. (2011). Occurrences and characteristics of disinfection by-products in swimming pool water. Graduate Institute of Environmental Health, College of Public Health, National Taiwan University.

Nikolaou, A.D., Golfinopoulos, S.K., Arhonditsis, G.B., Kolovoyiannis, V., Lekkas, T.D. (2004). Modeling the formation of chlorination by-products in river waters with different quality. Chemosphere, 55(3), 409–420.

Ou, T.Y. (2014). Effect of UV/H2O2 oxidation process on disinfection by-product formation for algae and activated sludge. Graduate Institute of Environmental Health, College of Public Health, National Taiwan University.

Schmalz, C., Frimmel, F.H., Zwiener, C. (2011). Trichloramine in swimming pools - Formation and mass transfer. Water Research, (45), 2681-2690.

Simard, S., Robert Tardif, R., Rodriguez, M.J. (2013). Variability of chlorination by-product occurrence in water of indoor and outdoor swimming pools. Water Research, 47, 1763-1772.

Soltermann, F., Lee, M., Canonica, S., von Gunten, U. (2013). Enhanced N-nitrosamine formation in pool water by UV irradiation of chlorinated secondary amines in the presence of monochloramine. Water Research, 47, 79-90.

Teo, T. L. L., Coleman, H. M., Khan, S. J. (2015). Chemical contaminants in swimming pools: Occurrence, implications and control. Environment International, 76, 16-31.

Villanueva, C. M., Cantor, K. P.,Grimalt, J. O., Malats, N., Silverman, D., Tardon, A., Kogevinas, M. (2007). Bladder cancer and exposure to water disinfection by-product through ingestion, bathing, showing, and swimming in pools. American journal of epidemiology, 165(2), 148-156.

Weng, S. C., Li, J., Blatchley, E. R. (2011). Disinfection by-product dynamics in a chlorinated, indoor swimming pool under conditions of heavy use: National swimming competition. Water Research, 45, 5241-5248.

Weng, S. C., Li, J., Blatchley, E. R. (2012). Effects of UV254 irradiation on residual chlorine and DBPs in chlorination of model organic-N precursors in swimming pools. Water Research, 46, 2674-2682.

WHO. (2006). Guidelines for safe recreational water environments, volume 2: swimming pools and similar environments.

Yurteri,C., Gurol,M.D. (1988). Ozone consumption in natural waters: Effects of background organic matter, pH and carbonate species, ozone. Science and Engineering, 10(3), 277-290.

中華民國行政院環境保護署(2014),飲用水水質標準

台北市政府(2012),台北市營業衛生管理自治條例

白姍燕 (2000),以臭氧氧化水中有機物之研究,國立台灣大學公共衛生學院環境衛生研究所碩士論文

石楓華,于莉(2011),飲用水消毒副產物生成與控制研究,中國建築工業出版社,北京
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top