跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/18 11:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡孟純
研究生(外文):Meng-Chun Tsai
論文名稱:確保工業排氣櫃效益之新型流量計設計研究
論文名稱(外文):A New Type Flowmeter Design to Ensure the Efficiency of Fume Hood in Industrial Environment
指導教授:陳佳堃
口試委員:蘇大成李孟杰曾子彝
口試日期:2018-05-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:61
中文關鍵詞:計算流體力學多孔式孔口板流量計壓差式流量計壓力損失
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
流量計量測是計量科學重要的技術之一,可用於工業生產,環境保護、廢棄處理、能源計量,以流量計作為管理能源的基礎,實施節能降耗。然而ISO-5167所規範之孔口板(orifice plate)標準流量計,礙於其量測壓力孔之位置,造成裝設時需要龐大的體積,這並不適用於狹窄作業場所。因此,本研究要設計一款新型多孔洞式孔板流量計,縮短壓力孔間量測的距離,以縮小整體體積,以方便狹窄作業場所使用。我們自行設計多孔洞的孔口板,利用計算流體力學(Computational Fluid Dynamics, CFD)的方式進行模擬,透過數值模擬,可以得知流場內各個位置的物理量,如速度、壓力、濃度,溫度等分布。經過研究發現,多孔洞的孔口板可以破壞原先在標準流量計後方的大迴流區,而以相同面積之單孔洞相較,多孔洞孔口板量測壓力孔的距離較短,這可使整體體積縮小。而本研究發現多孔洞之間的比例關係確實會影響上下游壓力孔之間的距離,即外圈孔徑/中心孔徑愈大,上下游壓力孔的距離可以愈短,並且各別提供了上游及下游壓力孔位置的預測方程式。另外,新型流量計所造成的壓損也低於標準流量計,其壓力損失較標準流量計可減少10 %到20 %。此外,新型流量計在使用上仍需與標準流量計校正,因在不同吸氣速度下的流量誤差變化程度是相同的,因此只要另外乘上一係數k值,就可以達到校正效果。使用流量計可以穩定控制流體在管道中的流量,避免能源的浪費,進而達到節能效果。
Flow measurement plays an important role in scientometrics. It can be used in industrial production, environmental protection, waste disposal, energy measurement, and energy conservation. The standard (orifice plate) flowmeter in accordance with ISO-5167 is that it requires a huge space for installation because of its position of the pressure taps. It is often limited in narrow work places. Therefore, in this study, we designed a multi-hole orifice plate flowmeter to resolve this problem by reducing the distance between the pressure taps of upstream and downstream. We designed a multi-hole orifice plate. And the computational fluid dynamics (CFD) was conducted to simulate some parameters in each position of flow field, such as velocity, pressure, concentration and temperature. We found that this kind of multi-hole orifice plate could destroy the large recirculation zone, which is generated behind the original plate. The distance of pressure taps of multi-hole orifice plate is shorter than single-hole plate. It could be applied to a smaller area.
We also found that the ratio of diameter of outer and central orifice would influence the distance between the upstream and downstream pressure taps. We provide an equation to predict the location of pressure taps in the upstream and downstream. Otherwise, the pressure loss of the new flowmeter can reduce by 10% to 20% compared with a standard flowmeter. The new flowmeter needs to be calibrated with the standard flowmeter. We concluded that the new flowmeter has advantages of lower pressure loss and shorter length of pipe.
致謝 i
摘要 ii
Abstract iii
目錄 v
表目錄 vii
圖目錄 viii
縮寫說明 xi
符號說明 xii
第一章 前言 1
1.1 研究動機 1
1.2 文獻探討 3
1.2.1 流量計種類 3
1.2.2 孔口板流量計相關性研究 5
1.2.3 CFD數值模擬 5
1.2.4 ISO標準流量計規範 7
1.3研究目的及流程 9
第二章 研究方法 11
2.1 統御方程式 11
2.1.1 質量守恆方程式 11
2.1.2 動量守恆方程式 12
2.2 數值方法 12
2.3 模擬分析軟體 13
2.4 標準流量計之流量計算 15
2.5 流量計模型 20
2.6初始條件及邊界條件 24
2.7 網格獨立性 24
第三章 計算流體力學結果與討論 27
3.1 標準流量計結果 27
3.2 新型流量計之結果 33
3.3 新型流量計之驗證 38
第四章 ISO和新型流量計之比較與討論 44
4.1 壓力分布 44
4.2 速度分布 48
4.3 流場結構 51
4.4 流量 53
第五章 結論 57
第六章 參考文獻 59
1.孫淮清,紀綱,蔡武昌. 流量測量方法和儀表的選用. 1 ed. 北京: 化學工業出版社; 2001 2001-04-01.
2.Reader-Harris M. Orifice plates and venturi tubes: Springer; 2016.
3.Standardization IOf. Measurement of fluid flow by means of pressure differential devices inserted in circular-cross section conduits running full 2003.
4.Standards of Permissible Exposure Limits of Airborne Hazardous Substances in Workplace.
5.Diberardinis LJ, First MW, Ivany RE. Field results of an in-place, quantitative performance test for laboratory fume hoods. Applied Occupational and Environmental Hygiene. 1991;6(3):227-31.
6.Guffey SE, Barnea N. Effects of face velocity, flanges, and mannikin position on the effectiveness of a benchtop enclosing hood in the absence of cross-drafts. American Industrial Hygiene Association Journal. 1994;55(2):132-9.
7.Takada S, Okamoto S, Yamada C, Ukai H, Samoto H, Ohashi F, et al. Chemical exposures in research laboratories in a university. Industrial health. 2008;46(2):166-73.
8.Tseng LC, Huang RF, Chen CC, Chang CP. Correlation between airflow patterns and performance of a laboratory fume hood. Journal of occupational and environmental hygiene. 2006;3(12):694-706.
9.Azari MR, Asadi P, Jafari MJ, Soori H, Hosseini V. Occupational exposure of a medical school staff to formaldehyde in tehran. Tanaffos. 2012;11(3):36-41.
10.Fletcher B, Johnson A. Containment testing of fume cupboards—II. Test room measurements. The Annals of Occupational Hygiene. 1992;36(4):395-405.
11.Ivany RE, FIRST MW, Diberardinis LJ. A new method for quantitative, in-use testing of laboratory fume hoods. American Industrial Hygiene Association Journal. 1989;50(5):275-80.
12.Smith TC, Flynn MR, Dement JM. A design and performance analysis of laboratory fume hoods. Applied Occupational and Environmental Hygiene. 1994;9(2):117-24.
13.Burgess WA, Ellenbecker MJ, Treitman RD. Ventilation for control of the work environment: John Wiley & Sons; 2004.
14.Hitchings D. ANSI/ASHRAE 110 fume hood performance testing. Laboratory Saf Environ Manage 3 (6)1995.
15.Standardization ECf. Fume cupboards-parts 3: type test methods (EN 14175-3). European Committee for Standardization, Brussels.; 2003.
16.Huang RF, Chen J-K, Hung W-L. Flow and Containment Characteristics of a Sash-less, Variable-Height Inclined Air-Curtain Fume Hood. The Annals of Occupational Hygiene. 2013;57(7):934-52.
17.Greenley PL, Billings CE, DiBerardinis LJ, Edwards RW, Barkley WE. Containment testing of laboratory hoods in the as-used condition. Applied occupational and environmental hygiene. 2000;15(2):209-16.
18.Hardwick T. A study of how sash movement affects performance of fume hoods. ASHRAE Transactions. 1997;103:845.
19.日本電器計測器工業會編. 流量計的正確使用方法. 1 ed. 中華民國: 中國生產力中心; 1992 1992-02.
20.劉欣榮. 流量計. 2 ed. 北京: 水利電力出版社; 1990 1990-03.
21.吴小平. 差压流量计的发展现状. 常州工學院學報. 2007;20(4):49-51.
22.Abou El-Azm Aly A, Chong A, Nicolleau F, Beck S. Experimental study of the pressure drop after fractal-shaped orifices in turbulent pipe flows. Experimental Thermal and Fluid Science. 2010;34(1):104-11.
23.Singh VK, John Tharakan T. Numerical simulations for multi-hole orifice flow meter. Flow Measurement and Instrumentation. 2015;45:375-83.
24.Zhao T, Zhang J, Ma L. A general structural design methodology for multi-hole orifices and its experimental application. Journal of Mechanical Science and Technology. 2011;25(9):2237.
25.Malavasi S, Messa G, Fratino U, Pagano A. On the pressure losses through perforated plates. Flow Measurement and Instrumentation. 2012;28:57-66.
26.Shan F, Liu Z, Liu W, Tsuji Y. Effects of the orifice to pipe diameter ratio on orifice flows. Chemical Engineering Science. 2016;152:497-506.
27.Massey BS, Ward-Smith J. Mechanics of fluids: Crc Press; 1998.
28.Davis R, Mattingly G. Numerical modelling of turbulent flow through thin orifice plates. Proceedings of the Semp on Flow in Open Channels and Closed Conduits Held at NBS. 1977:23-5.
29.Chen J-q, Wang B, WU B, CHU Q-d. CFD simulation of flow field in standard orifice plate flow meter. Journal of Experiments in Fluid Mechanics. 2008;22(2):51-5.
30.Erdal A, Andersson H. Numerical aspects of flow computation through orifices. Flow Measurement and Instrumentation. 1997;8(1):27-37.
31.Singh S, Gandhi B, Seshadri V, Chauhan V. Design of a bluff body for development of variable area orifice-meter. Flow measurement and Instrumentation. 2004;15(2):97-103.
32.Singh RK, Singh S, Seshadri V. CFD prediction of the effects of the upstream elbow fittings on the performance of cone flowmeters. Flow Measurement and Instrumentation. 2010;21(2):88-97.
33.Tukiman M, Ghazali M, Sadikin A, Nasir N, Nordin N, Sapit A, et al., editors. CFD simulation of flow through an orifice plate. IOP Conference Series: Materials Science and Engineering; 2017: IOP Publishing.
34.Lee JI, Cheong AJ, Min BK, editors. A Numerical Study on Flow Characteristics Through Orifice Flowmeter and Measurement Accuracy Depending on Upstream Straight Length. ASME 2017 Fluids Engineering Division Summer Meeting; 2017: American Society of Mechanical Engineers.
35.Durst F, Wang A-B, editors. Experimental and numerical investigations of the axisymmetric, turbulent pipe flow over a wall-mounted thin obstacle. 7th Symposium on Turbulent Shear Flows, Volume 1; 1989.
36.Reis LCBS, Carvalho JA, Nascimento MAR, Rodrigues LO, Dias FLG, Sobrinho PM. Numerical modeling of flow through an industrial burner orifice. Applied Thermal Engineering. 2014;67(1):201-13.
37.Eiamsa-ard S, Ridluan A, Somravysin P, Promvonge P. Numerical investigation of turbulent flow through a circular orifice. KMITL Sci J. 2008;8(1):44-50.
38.Shah MS, Joshi JB, Kalsi AS, Prasad CSR, Shukla DS. Analysis of flow through an orifice meter: CFD simulation. Chemical Engineering Science. 2012;71:300-9.
39.Shaaban S. Optimization of orifice meter''s energy consumption. Chemical Engineering Research and Design. 2014;92(6):1005-15.
40.王福軍. 計算流體動力學分析─CFD軟件原理及應用. 1, editor. 北京: 清華大學出版社; 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top