跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/20 16:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高珮容
研究生(外文):Pei-Jung Kao
論文名稱:聽覺提示結合跑步機訓練對巴金森氏症患者於大腦皮質興奮性與步態表現的影響
論文名稱(外文):Effects of Combined Auditory Cues and Treadmill Training on Cortical Excitability and Gait Performance in Parkinson’s Disease
指導教授:陸哲駒陸哲駒引用關係
指導教授(外文):Jer-Junn Luh
口試委員:吳瑞美李亞芸
口試日期:2018-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理治療學研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:103
中文關鍵詞:巴金森氏症聽覺提示經顱磁刺激皮質興奮度步態跑步機訓練
相關次數:
  • 被引用被引用:1
  • 點閱點閱:140
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
研究背景:巴金森氏症是常見的神經退化性疾病,由於基底核的退化性病變導致巴金森氏症患者在自動化動作控制上受損,例如:步態失調。臨床上常使用聽覺提示介入以改善行走步伐變異度高、凍結步態等問題。此外,聽覺提示為基礎的步態訓練對步態的改善效果可能來自於一系列神經塑性的累積。然而,目前鮮少研究顯示巴金森氏症患者經過聽覺提示訓練後其神經生理的改變,另外,也少有研究比較聽覺提示對於有或無步態凍結的巴金森氏症患者之效果。
目的:本研究將探討一次性以聽覺提示為基礎之跑步機訓練對於巴金森氏症患者神經生理與步態表現的影響,藉由經顱磁刺激評估大腦皮質興奮度來顯示神經生理之變化。本研究也探討聽覺提示對於有或無步態凍結之巴金森氏症患者是否有不同影響。
方法:此為隨機交叉試驗,收取17位巴金森氏患者(PD),其中8位有凍結步態(FOG),9位無凍結步態(nFOG),且另收取9位健康成年人(Control)作為對照組參與本試驗,每組皆以隨機順序接受兩種情形之介入,兩次訓練中間會相隔至少一星期,兩次訓練分別為30分鐘之以聽覺提示為基礎之跑步機訓練(AC condition)和沒有聽覺提示之跑步機訓練(NC condition)。每位受試者將接受介入前和介入後的評估。主要評估指標為大腦皮質興奮度,次要評估指標為舒適與最快行走速度下的走路表現。
統計分析:使用變異數分析(analysis of variance)檢測組間介入前、後之變化。
結果: 在大腦皮質興奮度方面,無論有無聽覺提示,巴金森氏症患者相較於健康人在接受訓練後其皮質寧靜期(cortical silent period, CSP)顯著延長(p<0.001),有凍結症狀組只有在合併聽覺提示訓練後有顯著延長的現象(AC: p=0.032; NC: p=0.257),而無凍結步態組無論有無聽覺提示介入,其皮質寧靜期都有顯著延長(AC: p=0.007; NC: p=0.008)。無論有無聽覺提示,巴金森氏症患者與健康人在經過訓練後,顯著減少刺激間距兩毫秒的皮質內抑制(short intracortical inhibition, SICI)以及增加刺激間距十、十二毫秒的皮質內促進(short intracortical facilitation, ICF),然而有和無凍結步態組在皮質內抑制與促進方面,經過無論有無聽覺提示的訓練後並無顯著差異。在步態表現方面,無論有無聽覺提示,巴金森氏症患者與健康人在訓練後顯著增加舒服行走速度(p=0.006)與步長(p<0.001),此外,無論有無聽覺提示,有凍結步態組與無凍結步態組經過訓練後,皆顯著增加其舒服行走的步長(p=0.002),在舒服行走步伐變異度方面,無論有無聽覺提示介入,有凍結步態組經過訓練後,其行走步伐變異度有下降趨勢,而無凍結步態組則呈相反趨勢。
結論: 一次性的跑步機訓練無論有無結合聽覺提示,可以調控巴金森氏症患者之大腦皮質興奮度並且增加舒服行走時的步長與速度。聽覺提示結合跑步機訓練能增強有或無凍結步態者的皮質脊髓抑制,然而,有凍結步態者若接受沒有聽覺提示的跑步機訓練則沒有顯示此效果。
Background: Parkinson’s disease (PD) is a common neurodegenerative disorder. Dysfunction of dopaminergic cells in basal ganglia leads to deficits in the automatic execution of movements such as gait disturbances. Auditory cues are often used in clinical setting and revealed benefits in ambulation. Moreover, the effects of cueing-based training on gait pattern might come from the accumulation of a series of neuroplasticity through serial motor training. However, current studies provided little information on the changes of neuroplasticity after the patients with PD carried out the cued-based training. Furthermore, it is still uncertain whether PD with or without freezing of gait (FOG) can achieve equal favorable effects from auditory cues.
Purpose: The present study is to investigate the effects of auditory-cued treadmill training for a single session on the neurophysiology and gait performance in patients with PD. Neurophysiology will be evaluated the cortical excitability through transcranial magnetic stimulation (TMS). The study will further explore whether any different effects of auditory cues between freezers and non-freezers.
Methods: This is a crossover study. Freezers (FOG, n=8), non-freezers (nFOG, n=9), and healthy subjects (control, n=9) were recruited in this study. Each subject randomly carried out training with two condition with at least one-week washout interval. Two conditions were 30-minutes of treadmill training with (AC condition) and without rhythmic auditory cues (NC condition). All subjects received the baseline and post-treatment assessments. Primary outcome measures included the cortical excitability and the secondary outcome measures included the gait performance in both comfortable and fast walking speed.
Statistical analysis: Repeated measure analysis of variance (RM-ANOVA) was used to determine differences of mean scores of the dependent variables between groups under two condition. The statistical significance was set at P<0.05.
Results: PD subjects compared to healthy subjects revealed lengthened CSP duration after training whether with or without auditory cues (p<0.001 and p=0.392, respectively). Significantly increased CSP duration in AC condition (p=0.032), but not in NC condition (p=0.257) for the FOG group was found. The nFOG group presented significantly lengthened CSP duration in both AC and NC condition (p=0.007 and p=0.008, respectively). Both PD and control groups reduced SICI(2ms), increased ICF(10ms), and ICF(12ms) after training whether with or without AC (p=0.003, p=0.009, and p=0.009, respectively), but the FOG and nFOG did not show significant differences in SICI and ICF after training. For the gait performance in comfortable speed, PD and control group showed increased speed (p=0.006) and stride length (p<0.001) after training whether with or without AC. Moreover, both the FOG and nFOG group increased stride length (p=0.002) after treadmill training whether with or without auditory cues. The step time CV in the FOG group presented a downward tendency after training, whereas the non-freezers presented an opposite picture.
Conclusion: One-session treadmill training whether with or without auditory cues played a major role in modulated cortical excitability, increased step length, and gait velocity in comfortable walking speed for patients with PD. The auditory cues with treadmill training enhanced the corticospinal inhibition in both freezers and non-freezers. However, this phenomenon cannot be found in freezers when they received treadmill training without cues.
口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract v
LIST of ABBREVIATIONS viii
FIGURES xiii
TABLES xiv
APPENDICES xv
Chapter 1 Introduction 1
1.1 Background 1
1.2 Purpose and significance 5
1.3 Hypotheses 7
Chapter 2 Literature Review 9
2.1 Introduction of Parkinson’s disease 9
2.2 External cueing as rehabilitative strategy 12
2.3 Treadmill training for patients with Parkinson’s disease 19
2.4 Transcranial magnetic stimulation 23
2.5 Summary of review 28
Chapter 3 Methods 31
3.1 Study design 31
3.2 Subjects 31
3.3 Procedure 32
3.4 Interventions 33
3.5 Outcome measurements 34
3.6 Statistical analysis 38
Chapter 4 Results 39
4.1 Demographics and baseline characteristics of patients and healthy adults 39
4.2 Transcranial magnetic stimulation 40
4.3 Gait performance 41
Chapter 5 Discussion 44
5.1 Effects of auditory-cued treadmill training on cortical excitability 44
5.2 Effects of auditory-cued treadmill training on gait performance 48
5.3 Treadmill may act as another external cues 49
5.4 Impact of the interventional duration on the effects of the auditory-cued treadmill training 50
5.5 Clinical implication 52
5.6 Limitation and future study 53
Chapter 6 Conclusion 55
References 56
1.Alexander GE, Crutcher MD, DeLong MR. Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor,“prefrontal” and “limbic” functions. Prog Brain Res. 1991;85:119-46.
2.Tanner CM, Goldman SM. Epidemiology of Parkinson''s disease. Neurol Clin. 1996;14:317-35.
3.Nenadic I, Gaser C, Volz HP, Rammsayer T, Häger F, Sauer H. Processing of temporal information and the basal ganglia: new evidence from fMRI. Exp Brain Res. 2003;148:238-46.
4.Wu T, Hallett M, Chan P. Motor automaticity in Parkinson''s disease. Neurobiol Dis. 2015;82:226-34.
5.Hausdorff JM, Cudkowicz ME, Firtion R, Wei JY, Goldberger AL. Gait variability and basal ganglia disorders: Stride‐to‐stride variations of gait cycle timing in parkinson''s disease and Huntington''s disease. Mov Disord. 1998;13:428-37.
6.Hausdorff J, Schaafsma J, Balash Y, Bartels A, Gurevich T, Giladi N. Impaired regulation of stride variability in Parkinson''s disease subjects with freezing of gait. Exp Brain Res. 2003;149:187-94.
7.Willems AM, Nieuwboer A, Chavret F, Desloovere K, Dom R, Rochester L, et al. The use of rhythmic auditory cues to influence gait in patients with Parkinson''s disease, the differential effect for freezers and non-freezers, an explorative study. Disabil Rehabil. 2006;28:721-8.
8.Arias P, Cudeiro J. Effect of rhythmic auditory stimulation on gait in Parkinsonian patients with and without freezing of gait. PloS one. 2010;5:e9675.
9.Bloem BR, Hausdorff JM, Visser JE, Giladi N. Falls and freezing of gait in Parkinson''s disease: a review of two interconnected, episodic phenomena. Mov Disord. 2004;19:871-84.
10.Giladi N, Nieuwboer A. Understanding and treating freezing of gait in parkinsonism, proposed working definition, and setting the stage. Mov Disord. 2008;23.
11.Nutt JG, Bloem BR, Giladi N, Hallett M, Horak FB, Nieuwboer A. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol. 2011;10:734-44.
12.Hausdorff JM, Edelberg HK, Mitchell SL, Goldberger AL, Wei JY. Increased gait unsteadiness in community-dwelling elderly fallers. Arch Phys Med Rehabil. 1997;78:278-83.
13.Maki BE. Gait changes in older adults: predictors of falls or indicators of fear? J Am Geriatr Soc. 1997;45:313-20.
14.Hausdorff JM, Rios DA, Edelberg HK. Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch Phys Med Rehabil. 2001;82:1050-6.
15.Hausdorff J. Stride variability: beyond length and frequency. Gait Posture. 2004;20:304.
16.Nombela C, Hughes LE, Owen AM, Grahn JA. Into the groove: can rhythm influence Parkinson''s disease? Neurosci Biobehav Rev. 2013;37:2564-70.
17.Bella SD, Benoit CE, Farrugia N, Schwartze M, Kotz SA. Effects of musically cued gait training in Parkinson''s disease: beyond a motor benefit. Ann N Y Acad Sci. 2015;1337:77-85.
18.Hausdorff JM, Lowenthal J, Herman T, Gruendlinger L, Peretz C, Giladi N. Rhythmic auditory stimulation modulates gait variability in Parkinson''s disease. Eur J Neurosci. 2007;26:2369-75.
19.Arias P, Cudeiro J. Effects of rhythmic sensory stimulation (auditory, visual) on gait in Parkinson’s disease patients. Exp Brain Res. 2008;186:589-601.
20.Frazzitta G, Maestri R, Uccellini D, Bertotti G, Abelli P. Rehabilitation treatment of gait in patients with Parkinson''s disease with freezing: a comparison between two physical therapy protocols using visual and auditory cues with or without treadmill training. Mov Disord. 2009;24:1139-43.
21.Chaiwanichsiri D, Wangno W, Kitisomprayoonkul W, Bhidayasiri R. Treadmill training with music cueing: a new approach for Parkinson’s gait facilitation. Asian Biomedicine. 2011;5:649-54.
22.Sanes JN, Donoghue JP. Plasticity and primary motor cortex. Annu Rev Neurosci. 2000;23:393-415.
23.Rioult-Pedotti MS, Friedman D, Hess G, Donoghue JP. Strengthening of horizontal cortical connections following skill learning. Nat Neurosci. 1998;1:230.
24.Nudo RJ. Functional and structural plasticity in motor cortex: implications for stroke recovery. Phys Med Rehabil Clin N Am. 2003;14:S57-S76.
25.del Olmo MF, Arias P, Furio M, Pozo M, Cudeiro J. Evaluation of the effect of training using auditory stimulation on rhythmic movement in Parkinsonian patients—a combined motor and [18F]-FDG PET study. Parkinsonism Relat Disord. 2006;12:155-64.
26.Lefaucheur JP. Motor cortex dysfunction revealed by cortical excitability studies in Parkinson''s disease: influence of antiparkinsonian treatment and cortical stimulation. Clin Neurophysiol. 2005;116:244-53.
27.Chang HY, Luh JJ. Effects of rhythmic auditory cueing on stepping in place in patients with Parkinson’s disease. J Nov Physiother. 2018.
28.Hisahara S, Shimohama S. Dopamine receptors and Parkinson''s disease. Int J Med Chem. 2011;2011.
29.Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79:368-76.
30.Schaafsma JD, Giladi N, Balash Y, Bartels AL, Gurevich T, Hausdorff JM. Gait dynamics in Parkinson''s disease: relationship to Parkinsonian features, falls and response to levodopa. J Neurol Sci. 2003;212:47-53.
31.Martinez‐Martin P, Rodriguez‐Blazquez C, Kurtis MM, Chaudhuri K. The impact of non‐motor symptoms on health‐related quality of life of patients with Parkinson''s disease. Mov Disord. 2011;26:399-406.
32.Dorsey E, Constantinescu R, Thompson J, Biglan K, Holloway R, Kieburtz K, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007;68:384-6.
33.Pringsheim T, Jette N, Frolkis A, Steeves TD. The prevalence of Parkinson''s disease: A systematic review and meta‐analysis. Mov Disord. 2014;29:1583-90.
34.de Lau LM, Breteler MM. Epidemiology of Parkinson''s disease. Lancet Neurol. 2006;5:525-35.
35.Liu CC, Li CY, Lee PC, Sun Y. Variations in incidence and prevalence of Parkinson’s disease in Taiwan: a population-based nationwide study. Parkinsons Dis. 2016;2016.
36.Giladi N, McDermott M, Fahn S, Przedborski S, Jankovic J, Stern M, et al. Freezing of gait in PD Prospective assessment in the DATATOP cohort. Neurology. 2001;56:1712-21.
37.Macht M, Kaussner Y, Möller JC, Stiasny‐Kolster K, Eggert KM, Krüger HP, et al. Predictors of freezing in Parkinson''s disease: a survey of 6,620 patients. Mov Disord. 2007;22:953-6.
38.Hausdorff JM, Balash Y, Giladi N. Time series analysis of leg movements during freezing of gait in Parkinson''s disease: akinesia, rhyme or reason? Physica A. 2003;321:565-70.
39.Moore ST, MacDougall HG, Ondo WG. Ambulatory monitoring of freezing of gait in Parkinson''s disease. J Neurosci Methods. 2008;167:340-8.
40.Schaafsma J, Balash Y, Gurevich T, Bartels A, Hausdorff JM, Giladi N. Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson''s disease. Eur J Neurol. 2003;10:391-8.
41.Okuma Y. Freezing of gait in Parkinson’s disease. J Neurol. 2006;253:vii27-vii32.
42.Nieuwboer A, Rochester L, Herman T, Vandenberghe W, Emil GE, Thomaes T, et al. Reliability of the new freezing of gait questionnaire: agreement between patients with Parkinson''s disease and their carers. Gait Posture. 2009;30:459-63.
43.Nieuwboer A, Giladi N. Characterizing freezing of gait in Parkinson''s disease: models of an episodic phenomenon. Mov Disord. 2013;28:1509-19.
44.Nieuwboer A, Dom R, De Weerdt W, Desloovere K, Fieuws S, Broens‐Kaucsik E. Abnormalities of the spatiotemporal characteristics of gait at the onset of freezing in Parkinson''s disease. Mov Disord. 2001;16:1066-75.
45.Chee R, Murphy A, Danoudis M, Georgiou-Karistianis N, Iansek R. Gait freezing in Parkinson''s disease and the stride length sequence effect interaction. Brain. 2009;132:2151-60.
46.Plotnik M, Giladi N, Balash Y, Peretz C, Hausdorff JM. Is freezing of gait in Parkinson''s disease related to asymmetric motor function? Ann Neurol. 2005;57:656-63.
47.Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz MC, Lehericy S, Bergman H, et al. Goal-directed and habitual control in the basal ganglia: implications for Parkinson''s disease. Nat Rev Neurosci. 2010;11:760.
48.Spaulding SJ, Barber B, Colby M, Cormack B, Mick T, Jenkins ME. Cueing and gait improvement among people with Parkinson''s disease: a meta-analysis. Arch Phys Med Rehabil. 2013;94:562-70.
49.Lim I, van Wegen E, de Goede C, Deutekom M, Nieuwboer A, Willems A, et al. Effects of external rhythmical cueing on gait in patients with Parkinson''s disease: a systematic review. Clin Rehabil. 2005;19:695-713.
50.Thaut MH, McIntosh GC, Rice RR, Miller RA, Rathbun J, Brault J. Rhythmic auditory stimulation in gait training for Parkinson''s disease patients. Mov Disord. 1996;11:193-200.
51.del Olmo MF, Cudeiro J. Temporal variability of gait in Parkinson disease: Effectsof a rehabilitation programme based on rhythmic sound cues. Parkinsonism Relat Disord. 2005;11:25-33.
52.Cubo E, Leurgans S, Goetz CG. Short-term and practice effects of metronome pacing in Parkinson''s disease patients with gait freezing while in the ‘on’state: randomized single blind evaluation. Parkinsonism Relat Disord. 2004;10:507-10.
53.Enzensberger W, Fischer P-A. Metronome in Parkinson''s disease. Lancet. 1996;347:1337.
54.Hung YT, Lam IL, Chang YJ, Luh JJ. The effect of auditory cue on motor cortex excitability in Parkinson''s disease. Physiotherapy. 2015;101:e616.
55.Lewis PA, Miall RC. Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol. 2003;13:250-5.
56.Perez MA, Lungholt BK, Nyborg K, Nielsen JB. Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp Brain Res. 2004;159:197-205.
57.Harris-Love ML, Morton SM, Perez MA, Cohen LG. Mechanisms of short-term training-induced reaching improvement in severely hemiparetic stroke patients: a TMS study. Neurorehabil Neural Repair. 2011;25:398-411.
58.Delvendahl I, Jung NH, Kuhnke NG, Ziemann U, Mall V. Plasticity of motor threshold and motor-evoked potential amplitude–a model of intrinsic and synaptic plasticity in human motor cortex? Brain Stimul. 2012;5:586-93.
59.Pohl M, Rockstroh G, Rückriem S, Mrass G, Mehrholz J. Immediate effects of speed-dependent treadmill training on gait parameters in early Parkinson’s disease1. Arch Phys Med Rehabil. 2003;84:1760-6.
60.Bello O, Sanchez JA, Fernandez‐del‐Olmo M. Treadmill walking in Parkinson''s disease patients: adaptation and generalization effect. Mov Disord. 2008;23:1243-9.
61.Miyai I, Fujimoto Y, Ueda Y, Yamamoto H, Nozaki S, Saito T, et al. Treadmill training with body weight support: its effect on Parkinson''s disease. Arch Phys Med Rehabil. 2000;81:849-52.
62.Fisher BE, Wu AD, Salem GJ, Song J, Lin C-HJ, Yip J, et al. The effect of exercise training in improving motor performance and corticomotor excitability in people with early Parkinson''s disease. Arch Phys Med Rehabil. 2008;89:1221-9.
63.Toole T, Maitland CG, Warren E, Hubmann MF, Panton L. The effects of loading and unloading treadmill walking on balance, gait, fall risk, and daily function in Parkinsonism. NeuroRehabilitation. 2005;20:307-22.
64.Frenkel‐Toledo S, Giladi N, Peretz C, Herman T, Gruendlinger L, Hausdorff JM. Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson''s disease. Mov Disord. 2005;20:1109-14.
65.Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;325:1106-7.
66.Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003;2:145-56.
67.Rossini PM, Barker A, Berardelli A, Caramia M, Caruso G, Cracco R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol. 1994;91:79-92.
68.Rossini PM, Rossi S, Babiloni C, Polich J. Clinical neurophysiology of aging brain: from normal aging to neurodegeneration. Prog Neurobiol. 2007;83:375-400.
69.Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55:187-99.
70.Triggs WJ, Macdonell RA, Cros D, Chiappa KH, Shahani BT, Day BJ. Motor inhibition and excitation are independent effects of magnetic cortical stimulation. Ann Neurol. 1992;32:345-51.
71.Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J. Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol. 1999;517:591-7.
72.Di Lazzaro V, Oliviero A, Meglio M, Cioni B, Tamburrini G, Tonali P, et al. Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol. 2000;111:794-9.
73.Ziemann U. TMS and drugs. Clin Neurophysiol. 2004;115:1717-29.
74.Cantello R, Tarletti R, Civardi C. Transcranial magnetic stimulation and Parkinson’s disease. Brain Res Brain Res Rev. 2002;38:309-27.
75.Bareš M, Kaňovský P, Klajblová H, Rektor I. Intracortical inhibition and facilitation are impaired in patients with early Parkinson''s disease: a paired TMS study. Eur J Neurol. 2003;10:385-9.
76.Leon-Sarmiento FE, Rizzo-Sierra CV, Bayona EA, Bayona-Prieto J, Doty RL, Bara-Jimenez W. Novel mechanisms underlying inhibitory and facilitatory transcranial magnetic stimulation abnormalities in Parkinson''s disease. Arch Med Res. 2013;44:221-8.
77.Tremblay F, Tremblay LE. Cortico-motor excitability of the lower limb motor representation: a comparative study in Parkinson''s disease and healthy controls. Clin Neurophysiol. 2002;113:2006-12.
78.Vacherot F, Attarian S, Eusebio A, Azulay J-P. Excitability of the lower-limb area of the motor cortex in Parkinson''s disease. Neurophysiol Clin. 2010;40:201-8.
79.McIntosh GC, Brown SH, Rice RR, Thaut MH. Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson''s disease. J Neurol Neurosurg Psychiatry. 1997;62:22-6.
80.Picelli A, Camin M, Tinazzi M, Vangelista A, Cosentino A, Fiaschi A, et al. Three-dimensional motion analysis of the effects of auditory cueing on gait pattern in patients with Parkinson’s disease: a preliminary investigation. Neurol Sci. 2010;31:423-30.
81.Kujirai T, Caramia M, Rothwell JC, Day B, Thompson P, Ferbert A, et al. Corticocortical inhibition in human motor cortex. J Physiol. 1993;471:501-19.
82.Mariani B, Hoskovec C, Rochat S, Büla C, Penders J, Aminian K. 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. J Biomech. 2010;43:2999-3006.
83.Rossini PM, Burke D, Chen R, Cohen L, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee. Clin Neurophysiol. 2015;126:1071-107.
84.Nambu A. GABA-B receptor: Possible target for Parkinson''s disease therapy. Exp Neurol. 2012;1:121-2.
85.Tyagi RK, Bisht R, Pant J, Majeed ABA, Prakash A. Possible role of GABA-B receptor modulation in MPTP induced Parkinson''s disease in rats. Exp Toxicol Pathol. 2015;67:211-7.
86.Yang YR, Tseng CY, Chiou SY, Liao KK, Cheng SJ, Lai KL, et al. Combination of rTMS and Treadmill Training Modulates Corticomotor Inhibition and Improves Walking in Parkinson Disease A Randomized Trial. Neurorehabil Neural Repair. 2013;27:79-86.
87.Vacherot F, Attarian S, Vaugoyeau M, Azulay J. A motor cortex excitability and gait analysis on Parkinsonian patients. Mov Disord. 2010;25:2747-55.
88.Yamaguchi T, Fujiwara T, Liu W, Liu M. Effects of pedaling exercise on the intracortical inhibition of cortical leg area. Exp Brain Res. 2012;218:401-6.
89.Mitra S, Fraizer E. Effects of explicit sway-minimization on postural–suprapostural dual-task performance. Hum Mov Sci. 2004;23:1-20.
90.Herman T, Giladi N, Gruendlinger L, Hausdorff JM. Six weeks of intensive treadmill training improves gait and quality of life in patients with Parkinson’s disease: a pilot study. Arch Phys Med Rehabil. 2007;88:1154-8.
91.Rodger MW, Craig CM. Beyond the metronome: Auditory events and music may afford more than just interval durations as gait cues in Parkinson''s disease. Front Neurosci. 2016;10.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊