|
[1] J.P. Chu, J. Huang, J.S. Jang, Y. Wang, P. Liaw, Thin film metallic glasses: preparations, properties, and applications, Jom 62(4) (2010) 19-24. [2] J.P. Chu, J. Jang, J. Huang, H. Chou, Y. Yang, J. Ye, Y. Wang, J. Lee, F. Liu, P. Liaw, Thin film metallic glasses: Unique properties and potential applications, Thin Solid Films 520(16) (2012) 5097-5122. [3] W. Diyatmika, J.P. Chu, B.T. Kacha, C.-C. Yu, C.-M. Lee, Thin film metallic glasses in optoelectronic, magnetic, and electronic applications: A recent update, Current Opinion in Solid State and Materials Science 19(2) (2015) 95-106. [4] J.P. Chu, T.-Y. Liu, C.-L. Li, C.-H. Wang, J.S.C. Jang, M.-J. Chen, S.-H. Chang, W.-C. Huang, Fabrication and characterizations of thin film metallic glasses: Antibacterial property and durability study for medical application, Thin Solid Films 561 (2014) 102-107. [5] A.-N. Wang, G.-P. Yu, J.-H. Huang, Fracture toughness measurement on TiN hard coatings using internal energy induced cracking, Surface and Coatings Technology 239 (2014) 20-27. [6] C. Chiang, J. Chu, F. Liu, P. Liaw, R. Buchanan, A 200 nm thick glass-forming metallic film for fatigue-property enhancements, Applied physics letters 88(13) (2006) 131902. [7] C. Lee, J. Chu, W. Chang, J. Lee, J. Jang, P. Liaw, Fatigue property improvements of Ti–6Al–4V by thin film coatings of metallic glass and TiN: a comparison study, Thin Solid Films 561 (2014) 33-37. [8] J.P. Chu, J. Greene, J.S. Jang, J. Huang, Y.-L. Shen, P.K. Liaw, Y. Yokoyama, A. Inoue, T. Nieh, Bendable bulk metallic glass: Effects of a thin, adhesive, strong, and ductile coating, Acta Materialia 60(6) (2012) 3226-3238. [9] C.-C. Yu, C. Lee, J.P. Chu, J. Greene, P.K. Liaw, Fracture-resistant thin-film metallic glass: Ultra-high plasticity at room temperature, APL Materials 4(11) (2016) 116101. [10] P.A. Tuan, H. Oguchi, M. Hara, M. Shikida, H. Hida, T. Ando, K. Sato, H. Kuwano, A new metallic glass Fe-B-Nd-Nb thin film material for micro sensors and actuators: Fabrication and characterization, Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International Conference on, 2013, pp. 1040-1043. [11] S. Zhang, D. Sun, Y. Fu, H. Du, Toughness measurement of thin films: a critical review, Surface and Coatings Technology 198(1) (2005) 74-84. [12] S. Zhang, X. Zhang, Toughness evaluation of hard coatings and thin films, Thin Solid Films 520(7) (2012) 2375-2389. [13] T. Weihs, S. Hong, J. Bravman, W. Nix, Mechanical deflection of cantilever microbeams: A new technique for testing the mechanical properties of thin films, Journal of Materials Research 3(5) (1988) 931-942. [14] G. Zhang, Y. Liu, B. Zhang, Effect of annealing close to T g on notch fracture toughness of Pd-based thin-film metallic glass for MEMS applications, Scripta materialia 54(5) (2006) 897-901. [15] X.-K. Zhu, J.A. Joyce, Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization, Engineering Fracture Mechanics 85 (2012) 1-46. [16] G. Kirsch, Die theorie der elastizität und die bedürfnisse der festigkeitslehre, Springer1898. [17] C.E. Inglis, Stresses in a plate due to the presence of cracks and sharp corners, Spie Milestone series MS 137 (1997) 3-17. [18] H.E. Medina, R. Pidaparti, B. Hinderliter, Celebrating the 100th Anniversary of Inglis Result: From a Single Notch to Random Surface Stress Concentration Solutions, Applied Mechanics Reviews 67(1) (2014) 010802-010802-9. [19] B.A. Sun, W.H. Wang, The fracture of bulk metallic glasses, Progress in Materials Science 74 (2015) 211-307. [20] G.R. Irwin, Analysis of stresses and strains near the end of a crack traversing a plate, Journal of applied mechanics 24(3) (1957) 361-364. [21] A. Standard, E399-90, Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials1, Annual Book of ASTM Standards 3 (2002). [22] A. Standard, Standard test method for measurement of fracture toughness, ASTM, E1820-01 (2001) 1-46. [23] C.H. Wang, Introduction to fracture mechanics, DSTO Aeronautical and Maritime Research Laboratory Melbourne, Australia1996. [24] G.M. Pharr, Measurement of mechanical properties by ultra-low load indentation, Materials Science and Engineering: A 253(1) (1998) 151-159. [25] B.R. Lawn, A. Evans, D. Marshall, Elastic/plastic indentation damage in ceramics: the median/radial crack system, Journal of the American Ceramic Society 63(9‐10) (1980) 574-581. [26] G. Anstis, P. Chantikul, B.R. Lawn, D. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements, Journal of the American Ceramic Society 64(9) (1981) 533-538. [27] M. Nastasi, D.M. Parkin, H. Gleiter, Mechanical properties and deformation behavior of materials having ultra-fine microstructures, Springer Science & Business Media2012. [28] Z. Xia, W. Curtin, B. Sheldon, A new method to evaluate the fracture toughness of thin films, Acta materialia 52(12) (2004) 3507-3517. [29] K. Matoy, H. Schönherr, T. Detzel, G. Dehm, Micron-sized fracture experiments on amorphous SiOx films and SiOx/SiNx multi-layers, Thin Solid Films 518(20) (2010) 5796-5801. [30] F. Iqbal, J. Ast, M. Göken, K. Durst, In situ micro-cantilever tests to study fracture properties of NiAl single crystals, Acta Materialia 60(3) (2012) 1193-1200. [31] W. Cao, A. Kundu, Z. Yu, M.P. Harmer, R.P. Vinci, Direct correlations between fracture toughness and grain boundary segregation behavior in ytterbium-doped magnesium aluminate spinel, Scripta Materialia 69(1) (2013) 81-84. [32] S.-F. Hwang, J.-H. Yu, B.-J. Lai, H.-K. Liu, Young’s modulus and interlaminar fracture toughness of SU-8 film on silicon wafer, Mechanics of Materials 40(8) (2008) 658-664. [33] K. Takashima, Y. Higo, S. Sugiura, M. Shimojo, Fatigue crack growth behavior of micro-sized specimens prepared from an electroless plated Ni-P amorphous alloy thin film, Materials Transactions 42(1) (2001) 68-73. [34] S. Massl, W. Thomma, J. Keckes, R. Pippan, Investigation of fracture properties of magnetron-sputtered TiN films by means of a FIB-based cantilever bending technique, Acta Materialia 57(6) (2009) 1768-1776. [35] C. Chen, S. Nagao, K. Suganuma, J. Jiu, T. Sugahara, H. Zhang, T. Iwashige, K. Sugiura, K. Tsuruta, Macroscale and microscale fracture toughness of microporous sintered Ag for applications in power electronic devices, Acta Materialia 129 (2017) 41-51. [36] K. Matoy, H. Schönherr, T. Detzel, T. Schöberl, R. Pippan, C. Motz, G. Dehm, A comparative micro-cantilever study of the mechanical behavior of silicon based passivation films, Thin Solid Films 518(1) (2009) 247-256. [37] J. McCarthy, Z. Pei, M. Becker, D. Atteridge, FIB micromachined submicron thickness cantilevers for the study of thin film properties, Thin solid films 358(1) (2000) 146-151. [38] K. Matoy, T. Detzel, M. Müller, C. Motz, G. Dehm, Interface fracture properties of thin films studied by using the micro-cantilever deflection technique, Surface and Coatings Technology 204(6) (2009) 878-881. [39] C.S. John, The brittle-to-ductile transition in pre-cleaved silicon single crystals, Philosophical Magazine 32(6) (1975) 1193-1212. [40] K.E. Petersen, Silicon as a mechanical material, Proceedings of the IEEE 70(5) (1982) 420-457. [41] D. Di Maio, S. Roberts, Measuring fracture toughness of coatings using focused-ion-beam-machined microbeams, Journal of materials research 20(2) (2005) 299-302. [42] G. Žagar, V. Pejchal, M.G. Mueller, L. Michelet, A. Mortensen, Fracture toughness measurement in fused quartz using triangular chevron-notched micro-cantilevers, Scripta Materialia 112 (2016) 132-135. [43] F.Y. Cui, R.P. Vinci, A chevron-notched bowtie micro-beam bend test for fracture toughness measurement of brittle materials, Scripta Materialia 132 (2017) 53-57. [44] S. Liu, J. Wheeler, P. Howie, X. Zeng, J. Michler, W. Clegg, Measuring the fracture resistance of hard coatings, Applied Physics Letters 102(17) (2013) 171907. [45] W. Klement, R. Willens, P. Duwez, Non-crystalline structure in solidified gold–silicon alloys, Nature 187(4740) (1960) 869-870. [46] H. Chen, The influence of structural relaxation on the density and Young’s modulus of metallic glasses, Journal of Applied Physics 49(6) (1978) 3289-3291. [47] H. Kui, A.L. Greer, D. Turnbull, Formation of bulk metallic glass by fluxing, Applied Physics Letters 45(6) (1984) 615-616. [48] A. Inoue, A. Takeuchi, Recent development and application products of bulk glassy alloys, Acta Materialia 59(6) (2011) 2243-2267. [49] M. Telford, The case for bulk metallic glass, Materials Today 7(3) (2004) 36-43. [50] M. Ashby, A. Greer, Metallic glasses as structural materials, Scripta Materialia 54(3) (2006) 321-326. [51] H.H. Liebermann, Rapidly solidified alloys: processes, structures, properties, applications, Marcel Dekker, Inc, 270 Madison Ave, New York, New York 10016, USA, 1993. 788 (1993). [52] M. Ishida, H. Takeda, N. Nishiyama, K. Kita, Y. Shimizu, Y. Saotome, A. Inoue, Wear resistivity of super-precision microgear made of Ni-based metallic glass, Materials Science and Engineering: A 449 (2007) 149-154. [53] G. Kumar, A. Desai, J. Schroers, Bulk metallic glass: the smaller the better, Advanced materials 23(4) (2011) 461-476. [54] E. Parker, B. Thibeault, M. Aimi, M. Rao, N. MacDonald, Inductively coupled plasma etching of bulk titanium for MEMS applications, Journal of the Electrochemical Society 152(10) (2005) C675-C683. [55] M.F. Aimi, M.P. Rao, N.C. MacDonald, A.S. Zuruzi, D.P. Bothman, High-aspect-ratio bulk micromachining of titanium, Nature materials 3(2) (2004) 103-105. [56] S. Hata, K. Sato, A. Shimokohbe, Fabrication of thin film metallic glass and its application to microactuators, Asia Pacific Symposium on Microelectronics and MEMS, International Society for Optics and Photonics, 1999, pp. 97-108. [57] S. Wang, D. Sun, S. Hata, J. Sakurai, A. Shimokohbe, Fabrication of thin film metallic glass (TFMG) pipe for a cylindrical ultrasonic linear micro-actuator, Sensors and Actuators A: Physical 153(1) (2009) 120-126. [58] P.H. Tsai, T.H. Li, K.T. Hsu, J.W. Chiou, J.S.C. Jang, J.P. Chu, Effect of coating thickness on the cutting sharpness and durability of Zr-based metallic glass thin film coated surgical blades, Thin Solid Films 618 (2016) 36-41. [59] J.J. Kruzic, Bulk metallic glasses as structural materials: A review, Advanced Engineering Materials 18(8) (2016) 1308-1331. [60] M.D. Demetriou, M.E. Launey, G. Garrett, J.P. Schramm, D.C. Hofmann, W.L. Johnson, R.O. Ritchie, A damage-tolerant glass, Nature materials 10(2) (2011) 123-128. [61] J. Schroers, W.L. Johnson, Ductile Bulk Metallic Glass, Physical Review Letters 93(25) (2004) 255506. [62] P. Lowhaphandu, J.J. Lewandowski, Fracture toughness and notched toughness of bulk amorphous alloy: Zr-Ti-Ni-Cu-Be, Scripta Materialia 38(12) (1998) 1811-1817. [63] R.D. Conner, A.J. Rosakis, W.L. Johnson, D.M. Owen, Fracture toughness determination for a beryllium-bearing bulk metallic glass, Scripta Materialia 37(9) (1997) 1373-1378. [64] U. Ramamurty, S. Jana, Y. Kawamura, K. Chattopadhyay, Hardness and plastic deformation in a bulk metallic glass, Acta Materialia 53(3) (2005) 705-717. [65] C.H. Rycroft, E. Bouchbinder, Fracture toughness of metallic glasses: annealing-induced embrittlement, Physical review letters 109(19) (2012) 194301. [66] V. Keryvin, V. Hoang, J. Shen, Hardness, toughness, brittleness and cracking systems in an iron-based bulk metallic glass by indentation, Intermetallics 17(4) (2009) 211-217. [67] X. Xi, D. Zhao, M. Pan, W. Wang, Y. Wu, J. Lewandowski, Fracture of brittle metallic glasses: Brittleness or plasticity, Physical review letters 94(12) (2005) 125510. [68] M. Gao, B.A. Sun, C.C. Yuan, J. Ma, W.H. Wang, Hidden order in the fracture surface morphology of metallic glasses, Acta Materialia 60(20) (2012) 6952-6960. [69] Q. He, J.K. Shang, E. Ma, J. Xu, Crack-resistance curve of a Zr–Ti–Cu–Al bulk metallic glass with extraordinary fracture toughness, Acta Materialia 60(12) (2012) 4940-4949. [70] M. Ghidelli, A. Volland, J.-J. Blandin, T. Pardoen, J.-P. Raskin, F. Mompiou, P. Djemia, S. Gravier, Exploring the mechanical size effects in Zr 65 Ni 35 thin film metallic glasses, Journal of Alloys and Compounds 615 (2014) S90-S92. [71] L. Zhang, H. Yang, X. Pang, K. Gao, A.A. Volinsky, Microstructure, residual stress, and fracture of sputtered TiN films, Surface and Coatings Technology 224 (2013) 120-125. [72] M. Trueba, D. Gonzalez, M. Elizalde, J. Martínez-Esnaola, M. Hernandez, H. Li, D. Pantuso, I. Ocaña, Assessment of mechanical properties of metallic thin-films through micro-beam testing, Thin Solid Films 571 (2014) 296-301. [73] A. Riedl, R. Daniel, M. Stefenelli, T. Schöberl, O. Kolednik, C. Mitterer, J. Keckes, A novel approach for determining fracture toughness of hard coatings on the micrometer scale, Scripta Materialia 67(7) (2012) 708-711. [74] C.-C. Wang, Y.-W. Mao, Z.-W. Shan, M. Dao, J. Li, J. Sun, E. Ma, S. Suresh, Real-time, high-resolution study of nanocrystallization and fatigue cracking in a cyclically strained metallic glass, Proceedings of the National Academy of Sciences 110(49) (2013) 19725-19730. [75] R. Narayan, P. Tandaiya, R. Narasimhan, U. Ramamurty, Wallner lines, crack velocity and mechanisms of crack nucleation and growth in a brittle bulk metallic glass, Acta Materialia 80 (2014) 407-420. [76] J. Lewandowski*, W. Wang, A. Greer, Intrinsic plasticity or brittleness of metallic glasses, Philosophical Magazine Letters 85(2) (2005) 77-87. [77] M. Ghidelli, S. Gravier, J.-J. Blandin, J.-P. Raskin, F. Lani, T. Pardoen, Size-dependent failure mechanisms in ZrNi thin metallic glass films, Scripta Materialia 89 (2014) 9-12.
|