跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/14 23:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:卓建宏
研究生(外文):Hung-Chien Cho
論文名稱:考慮隨機需求與固定壽命之退化性EOQ模型之研究
論文名稱(外文):A study of deteriorating EOQ model with stochastic demand and fixed shelf-lifetime
指導教授:李強笙
指導教授(外文):Chiang-Sheng Lee
口試委員:紀佳芬Shi-Woei Lin
口試委員(外文):Chia-Fen Chi林希偉
口試日期:2018-01-11
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:48
中文關鍵詞:退化性商品EOQ 模型隨機性需求到期日腐敗性商品
外文關鍵詞:Deteriorating ItemsEOQStochastic DemandExpiration DatePerishable
相關次數:
  • 被引用被引用:1
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
在本研究我們提出兩個之退化性存貨模型並考慮隨機性需求與固定壽命。由於退化性商品在我們日常生活中隨處可見,所以已經有很許多學者研究關於此議題。而退化性商品需再在到期之前被販售掉或者被使用掉,因此隨著使用壽命的問題,我們也須考慮商品到期日的問題,以避免企業承擔不必要的損失。大部分的存貨模型都假設在確定性方程式或常數性的需求,但這是不合理的,因為現實生活中是需求是不可預測的。因此我們考慮上述因素提出兩種存貨政策。第一個存貨政策是不允許缺貨,也就是訂單會在庫存耗盡時迅速補貨。第二個存貨政策是允許缺貨,也就是說我們只能在到期日補貨,假如到期日庫存已提早耗盡就會發生缺貨。由於隨機性需求的影響,我們必需在每個模型裡考慮兩種方案。第一方案是當需求疲乏時,存貨可能會有剩餘品,因此這些商品需要報廢。第二方案是當需求旺盛時,由於存貨在到期日之前提早耗盡,在這個狀況下模型二會產生缺貨。最後,為了求解兩模型本研究為這兩種模型提出了近似解並考慮上述狀況,結果顯示我們的近似解非常接近真實最佳解,並且提出最佳單位時間利潤之敏感度分析。
This paper deals with two specific inventory models for deteriorating items with a stochastic demand rate and a fixed shelf lifetime. Many researchers have been studied deterioration phenomenon as the deteriorating items always appear ubiquitously. In practice, the expiration date is a problem of deteriorating items that must be sold before their fixed shelf lifetime, or that only can be used within a certain period after being unpacked. As a result, consideration of the expiry date could help enterprise to avoid profit loss without waste of the orders. Most of current inventory models dealing with deterioration would assume a certain or a constant demand function. This is certainly unreasonable in a prevailing market of stochastic demand which conforms to our daily reality, therefore stochastic demand must be considered. Here, we present ordering policies for two such inventory models. In model I, ordering would be immediately replenished when the inventory level drops to zero even before the expiration date. Namely, the stock shortage is not allowed. In model II, shortage is allowed and the items are not backlogged even after the stock depletes. Only at the expiration date can the replenishment arrived instantaneously. Furthermore, because of the effect of the stochastic demand condition, we must consider two cases for each model in this paper. In the first case, due to lack of demand, the stock remains even at expiration date. The remainder is assumed to be discarded with cost. In the second case, the stock depletes earlier before the expiration date during the period of high demand. In this case, model II occurs shortage until replenishment arrived at expiration date. Finally, we provide the approximated solution for optimal ordering quantity for both models. In order to maximize expected relevant total profit, we also present sensitivity analysis of the expected total relevant profit influenced by prices, expiration dates …etc. by the help of numerical examples. It shows that our approximated solutions from the assumed models that mentioned above gives conditions and the results very close to the optimal solution obtained from computation. Moreover, these results reveal the impact of various parameters on the optimal policy and the profit.
TABLE OF CONTENTS
摘要 I
Abstract II
誌謝 IV
TABLE OF CONTENTS V
LIST OF FIGURES VII
LIST OF TABLES VIII
CHAPTER 1. Introduction and literature review 1
CHAPTER 2. Assumptions and Notations 6
2.1 Assumptions 6
2.2 Notations 6
2.3 Model Descriptions 7
CHAPTER 3. Mathematical Model 9
3.1 Model I 10
Case I: X>δ 10
Case II: X≤δ 11
Lemma.1: 13
3.2 Solution process for Model I 16
Lemma.2: 17
3.3 Model II 19
Case I: X>δ 19
Case II: X≤δ 20
3.4 Solution process for Model II 22
CHAPTER 4. Numerical examples and Sensitivity analysis 27
4.1. Analysis of the Percentage Error in Model I 27
4.2. Sensitivity Analysis in Model I 29
4.3. Analysis of the Percentage Error in Model II 32
4.4. Sensitivity Analysis in Model II 34
CHAPTER 5. Conclusions 37
5.1 Future research 38
References 39
Aggarwal, S. P.(1979). Note on: An Order Level Lot Size Inventory Model for Deteriorating Items by Y. K. Shah. A I I E Transactions, 11(4), 344-346.
Aggoun, L.,Benkherouf, L., & Tadj, L (1996). A hidden markov model for inventory system with perishable. Journal of Applied Mathematics and Stochastic Analysis, 18, 423-430.
Bai, R., & Kendall, G.(2008). A Model for Fresh Produce Shelf-Space Allocation and Inventory Management with Freshness-Condition-Dependent Demand. INFORMS Journal on Computing, 20(1), 78-85.
Bakker, M., Riezebos, J., & Teunter, R. H.(2012). Review of inventory systems with deterioration since 2001. European Journal of Operational Research, 221(2), 275-284.
Covert, R. P., & Philip, G. C.(1973). An EOQ Model for Items with Weibull Distribution Deterioration. A I I E Transactions, 5(4), 323-326.
Feng, L.,Chan, Y. L., & Leopoldo Eduardo, C. B.(2017). Pricing and lot-sizing polices for perishable goods when the demand depends on selling price, displayed stocks, and expiration date. International Journal of Production Economics, 185, 11-20.
Ghosh, A., Jha, J. K., & Sarmah, S. P.(2017). Optimal lot-sizing under strict carbon cap policy considering stochastic demand. Applied Mathematical Modelling, 44, 688-704.
Goyal, S. K., & Giri, B. C.(2001). Recent trends in modeling of deteriorating inventory. European Journal of Operational Research, 16, 1-16.
Kalpakam, & Sapna. (1994). Continuous review (s, S) inventory system with random lifetimes and positive leadtimes. Operations Research, 5, 115-119.
Liu, L.(1990). (s, S), continuous review models for inventory with random lifetimes. Operations Research Letters, 9(3), 161-167.
Maihami, R., Karimi, B., & Ghomi, S. M. T. F.(2016). Effect of two-echelon trade credit on pricing-inventory policy of non-instantaneous deteriorating products with probabilistic demand and deterioration functions. Annals of Operations Research, 257(1-2), 237-273.
Muriana, C.(2016). An EOQ model for perishable products with fixed shelf life under stochastic demand conditions. European Journal of Operational Research, 255(2), 388-396.
Ghare, P. M., & Schrader, G. H.(1963). A model for exponentially decaying inventory system. Journal of Industrial Engineering International, 14, 238–243.
Padmanabhan, G. & Vrat, P.(1995). EOQ models for perishable items under stock dependent selling rate. European Journal of Operational Research, 86, 281-292.
Philip, G. C.(1974). A Generalized EOQ Model for Items with Weibull Distribution Deterioration. A I I E Transactions, 6(2), 159-162.
Shah, Y. K.(1977). An Order-Level Lot-Size Inventory Model for Deteriorating Items. A I I E Transactions, 9(1), 108-112.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top