( 您好!臺灣時間:2024/07/25 10:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Yu-Tung Hsieh
論文名稱(外文):Evaluation the Inhibitory Effects of Magnolol Carriers in Combination with Photodynamic Therapy on the Human Oral Cancer Cells
指導教授(外文):Chen-Yu Kao
口試委員(外文):Chih-Chia ChengShiao-Pieng Lee
外文關鍵詞:MagnololPhotodynamic TherapyHuman Oral Cancer Cell
  • 被引用被引用:0
  • 點閱點閱:140
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
厚朴酚(Magnolol)來自於中草藥木蘭科植物厚朴樹皮之萃取物,已知其具有抗發炎、抗腫瘤、抗應力以及止瀉的效果。尤其Magnolol在細胞體外實驗以及動物體內實驗都證實了擁有很強的抗氧化能力。但Magnolol因其具疏水、懸浮不佳等特性,因此在臨床醫學的應用上,受到諸多的限制。5-Aminolevulinic Acid(ALA)為一經過美國食品和藥物管理局認可上市後,廣泛應用於光動力治療上的藥物,本身不具生物毒性,針對癌細胞具有標靶的作用。為了改善Magnolol疏水及懸浮不佳等問題,本研究利用高分子PCADK包覆Magnolol製備成微米顆粒(PCADK-Magnolol MPs)與奈米顆粒(PCADK-Magnolol NPs),透過MTT assay評估顆粒對人類口腔類上皮癌細胞(OEC-M1)之抑制效果,並探討添加5-Aminolevulinic Acid對顆粒載體抑制癌細胞合併療法之效果。
研究結果顯示相對於微米顆粒,奈顆粒(PCADK-Blank NPs)在高濃度下對癌細胞具有一定的毒殺作用,搭載藥物之顆粒載體PCADK-Magnolol NPs對於抑制OEC-M1之能力較PCADK-Magnolol MPs佳。另一方面Magnolol顆粒載體添加5-Aminolevulinic Acid藥物之合併療法對於OEC-M1抑制能力具有較佳的毒殺作用。 
It is easier to treat oral cancer by improvement of technology in recent year. But the survival rate of oral cancer patients in the late-stage is only 20%. Preventing the happening of cytopathy is more important than the treatment. So, we should find a simple way to treat and diagnose without invasion such as photodynamic therapy for superficial carcinoma.
Magnolol, a kind of traditional herbal medicines extracted from the Magnolia, is known for anti-inflammatory, antineoplastic, anti-stress and antidiarrheic. Magnolol has the evidence of strong antioxidant capacity in vitro and in vivo experiment. However, its hydrophobicity and poor suspension property under physiological condition make it have many limitations in clinical medicine. 5-Aminolevulinic Acid (ALA) is one kind of drug used in photodynamic therapy (PDT) popularly and has been approved by US Food and Drug Administration. It has no biotoxicity and can be used as target-drug in cancer treatment. In this study, PCADK polymer was used to encapsulate magnolol into microparticles and nanoparticles to improve the poor hydrophobicity and suspension property of Magnolol. MTT was used to analyze the relative cell viability of oral epidermoid carcinoma cell (OEC-M1) and to estimate the antitumor effect of magnolol on OEC-M1. Furthermore, this study investigates the effect of combination therapy by adding 5-ALA to OEC-M1 cells which were treated with magnolol loaded particles.
The results showed that PCADK-Blank NPs had higher cytotoxicity than PCADK MPs at high concentration condition. The inhibitory effect of PCADK-Magnolol NPs to OEC-M1 was also superior to PCADK-Magnolol MPs at same magnolol concentration. More importantly, the combination therapy of 5-ALA and magnolol loaded particle showed the synergetic inhibitory effects on OEC-M1.
摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XI
縮寫表 XII
第一章 緒論 1
第二章 文獻回顧 3
2.1 癌症(Cancer) 3
2.2 口腔癌(Oral Cancer) 3
2.3 轉移(Metastasis) 4
2.4 厚朴酚(Magnolol) 6
2.5 光動力治療(Photodynamic Therapy, PDT). 7
2.5.1 光動力治療(Photodynamic Therapy, PDT)的優點 10
2.5.2 光動力治療(Photodynamic Therapy, PDT)的限制 10
2.5.3 5-Aminolevulinic Acid(ALA) 10
2.6 藥物傳輸系統(Drug Delivery System, DDS) 12
2.6.1 藥物傳輸原理 13
2.6.2 高分子藥物載體 14
2.6.3聚縮酮(polyketal) 17
2.7合併療法(Combination Therapy) 18
第三章 實驗材料與方法 20
3.1 研究設計 20
3.1.1 實驗理論 20
3.1.2 實驗設計 20
3.1.3 實驗架構與流程 21
3.2 實驗試劑、藥品與儀器設備 22
3.2.1 顆粒製備材料 22
3.2.2 細胞培養材料 23
3.2.3 實驗分析儀器 23
3.3 顆粒製備 24
3.3.1 Magnolol微米顆粒製備 24
3.3.2 Magnolol奈米顆粒製備 25
3.4 微米/奈米顆粒載體物性分析 26
3.4.1 製作Magnolol純藥檢量線 26
3.4.2 包埋率測定 26
3.4.3 以HPLC製作Magnolol純藥檢量線 27
3.4.4 包埋率測定 27
3.4.5 顆粒表面型態觀察 28
3.4.6 表面電位測量 28
3.4.7 體外釋放效率評估 28
3.5. 體外細胞實驗 30 OEC-M1 30
3.5.2 細胞繼代 30
3.5.3 細胞計數 31
3.5.4 種細胞 31
3.5.5 凍細胞 31
3.5.6 細胞活化 31
3.5.7 MTT細胞存活率分析 31
3.5.8 Phosphate buffered saline(PBS)配製 32
3.6 高分子PCADK合成 33
第四章 結果 36
4.1 Magnolol顆粒特性評估分析 36
4.1.1 顆粒表面型態分析 36 PCADK MPs 36 PCADK NPs 38
4.1.2 藥物包埋率分析 40
4.1.3 表面電位(Zeta potential)測定 42
4.1.4 顆粒粒徑分析 43
4.1.5 體外釋放評估 46
4.2. 細胞實驗 49
4.2.1 細胞型態 49
4.2.2 細胞毒性測試 52
第五章 討論 68
5.1 PCADK-Magnolol MPs/NPs之特性探討 68
5.2顆粒與藥物細胞毒性評估 71
5.3 Magnolol藥物載體與5-ALA合併療法之細胞毒性探討 72
第六章 結論 74
參考文獻 75
1. Mignogna, M.D., S. Fedele, and L. Lo Russo, The World Cancer Report and the burden of oral cancer. Eur J Cancer Prev, 2004. 13(2): p. 139-42.
2. 衛生福利部全球網站中文版, 105年國人死因統計結果.
3. Forastiere, A., et al., Head and neck cancer. N Engl J Med, 2001. 345(26): p. 1890-900.
4. Yu, C.H., et al., Cryotherapy for oral precancers and cancers. J Formos Med Assoc, 2014. 113(5): p. 272-7.
5. Broxterman, H.J. and N.H. Georgopapadakou, Anticancer therapeutics:“Addictive” targets, multi-targeted drugs, new drug combinations. Drug Resistance Updates, 2005. 8(4): p. 183-197.
6. Desale, S.S., et al., Targeted delivery of platinum-taxane combination therapy in ovarian cancer. Journal of Controlled Release, 2015. 220: p. 651-659.
7. Prabhakar, P., A. Kumar, and M. Doble, Combination therapy: a new strategy to manage diabetes and its complications. Phytomedicine, 2014. 21(2): p. 123-130.
8. Chen, F., et al., The emerging role of RUNX3 in cancer metastasis. Oncology reports, 2016. 35(3): p. 1227-1236.
9. 103年癌症登記年報. 衛生福利部國民健康署. 2017.
10. Sankaranarayanan, R., et al., Oral cancer: prevention, early detection, and treatment. 2015.
11. Bhuvaneswari, R., et al., Nimotuzumab increases the anti-tumor effect of photodynamic therapy in an oral tumor model. Oncotarget, 2015. 6(15): p. 13487.
12. Takes, R.P., et al., Distant metastases from head and neck squamous cell carcinoma. Part I. Basic aspects. Oral oncology, 2012. 48(9): p. 775-779.
13. Kotwall, C., et al., Metastatic patterns in squamous cell cancer of the head and neck. The American Journal of Surgery, 1987. 154(4): p. 439-442.
14. Pantel, K. and R.H. Brakenhoff, Dissecting the metastatic cascade. Nature Reviews Cancer, 2004. 4(6): p. 448.
15. Irani, S., Metastasis to head and neck area: a 16-year retrospective study. American journal of otolaryngology, 2011. 32(1): p. 24-27.
16. Chang, Y.S., et al., Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proceedings of the National Academy of Sciences, 2000. 97(26): p. 14608-14613.
17. Spano, D., et al. Molecular networks that regulate cancer metastasis. in Seminars in cancer biology. 2012. Elsevier.
18. Irani, S., et al., Expression profile of endothelin 1 and its receptor endothelin receptor A in papillary thyroid carcinoma and their correlations with clinicopathologic characteristics. Annals of diagnostic pathology, 2014. 18(2): p. 43-48.
19. Geiger, T.R. and D.S. Peeper, Metastasis mechanisms. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2009. 1796(2): p. 293-308.
20. Irani, S., Distant metastasis from oral cancer: A review and molecular biologic aspects. Journal of International Society of Preventive & Community Dentistry, 2016. 6(4): p. 265.
21. Balkwill, F., Tumour necrosis factor and cancer. Nature Reviews Cancer, 2009. 9(5): p. 361.
22. Wu, Y.-d. and B. Zhou, TNF-α/NF-κB/Snail pathway in cancer cell migration and invasion. British journal of cancer, 2010. 102(4): p. 639.
23. Wang, Y., et al., The role of Snail in EMT and tumorigenesis. Current cancer drug targets, 2013. 13(9): p. 963-972.
24. 沈孟翰, 探討添加二甲雙胍對提升厚朴酚載體對抑制人類口腔癌細胞之效果. 2015.
25. Wei, W., et al., Magnolol inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model. Inflammation, 2015. 38(1): p. 16-26.
26. Chang, C., Y. Hsu, and M. Lin, Magnolol protects against cerebral ischaemic injury of rat heatstroke. Clinical and experimental pharmacology and physiology, 2003. 30(5‐6): p. 387-392.
27. Xia, X., et al., Assessment of the anti-diarrhea function of compound Chinese herbal medicine cangpo oral liquid. African Journal of Traditional, Complementary and Alternative Medicines, 2014. 11(1): p. 140-147.
28. Shen, J.-L., et al., Honokiol and magnolol as multifunctional antioxidative molecules for dermatologic disorders. Molecules, 2010. 15(9): p. 6452-6465.
29. Lin, Q., et al., Magnolol additive as a replacer of antibiotic enhances the growth performance of Linwu ducks. Animal Nutrition, 2017. 3(2): p. 132-138.
30. 感染控制雜誌,第十四卷 第六期, 衛生福利部疾病管制署. 2004.
31. Wang, X., et al. In vivo study of ALA PLGA nanoparticles-mediated PDT for treating cutaneous squamous cell carcinoma. in Twelfth International Conference on Photonics and Imaging in Biology and Medicine (PIBM 2014). 2014. International Society for Optics and Photonics.
32. Enk, C.D. and A. Levi, Low‐irradiance red LED traffic lamps as light source in PDT for actinic keratoses. Photodermatology, photoimmunology & photomedicine, 2012. 28(6): p. 332-334.
33. Juzeniene, A., et al., Topical application of 5-aminolevulinic acid and its methylester, hexylester and octylester derivatives: considerations for dosimetry in mouse skin model. Photochemistry and photobiology, 2002. 76(3): p. 329-334.
34. Zhang, L.-W., Y.-P. Fang, and J.-Y. Fang, Enhancement techniques for improving 5-aminolevulinic acid delivery through the skin. Dermatologica sinica, 2011. 29(1): p. 1-7.
35. 郭佑啟, 光動力療法。台灣醫界. 2003.
36. Oniszczuk, A., et al., The potential of photodynamic therapy (PDT)—Experimental investigations and clinical use. Biomedicine & Pharmacotherapy, 2016. 83: p. 912-929.
37. Ericson, M.B., A.-M. Wennberg, and O. Larkö, Review of photodynamic therapy in actinic keratosis and basal cell carcinoma. Therapeutics and clinical risk management, 2008. 4(1): p. 1.
38. Erkiert-Polguj, A., et al., Light-emitting diodes in photodynamic therapy in non-melanoma skin cancers–own observations and literature review. Journal of Cosmetic and Laser Therapy, 2016. 18(2): p. 105-110.
39. Peng, Q., et al., 5‐Aminolevulinic acid‐based photodynamic therapy: principles and experimental research. Photochemistry and photobiology, 1997. 65(2): p. 235-251.
40. Dougherty, T.J., et al., Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. Journal of the National Cancer Institute, 1975. 55(1): p. 115-121.
41. Kinsella, T.J., et al., Photodynamic therapy in oncology. Expert opinion on pharmacotherapy, 2001. 2(6): p. 917-927.
42. Kennedy, J., R. Pottier, and D. Pross, Photodynamic therapy with endogenous protoporphyrin: IX: basic principles and present clinical experience. Journal of Photochemistry and Photobiology B: Biology, 1990. 6(1-2): p. 143-148.
43. Kennedy, J.C. and R.H. Pottier, New trends in photobiology: endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 1992. 14(4): p. 275-292.
44. Babič, A., et al., Tunable phosphatase-sensitive stable prodrugs of 5-aminolevulinic acid for tumor fluorescence photodetection. Journal of Controlled Release, 2016. 235: p. 155-164.
45. Zhang, J., et al., Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Scientific reports, 2015. 5: p. 8584.
46. Safari, J. and Z. Zarnegar, Advanced drug delivery systems: Nanotechnology of health design A review. Journal of Saudi Chemical Society, 2014. 18(2): p. 85-99.
47. Li, J., et al., A review on phospholipids and their main applications in drug delivery systems. Asian journal of pharmaceutical sciences, 2015. 10(2): p. 81-98.
48. 薛敬和, 生命科學與工程. 2nd ed. 百晴文化科技出版股份有限公司. 2012.
49. Park, K., Controlled drug delivery systems: past forward and future back. Journal of Controlled Release, 2014. 190: p. 3-8.
50. Ratner, B.D. and A.S. Hoffman, Physicochemical surface modification of materials used in medicine, in Biomaterials Science (Third Edition). 2013, Elsevier. p. 259-276.
51. Li, X., Design of controlled release drug delivery systems. 2005: McGraw Hill Professional.
52. Coelho, J.F., et al., Drug delivery systems: Advanced technologies potentially applicable in personalized treatments. EPMA journal, 2010. 1(1): p. 164-209.
53. Wang, X., et al., Advances of cancer therapy by nanotechnology. Cancer research and treatment: official journal of Korean Cancer Association, 2009. 41(1): p. 1.
54. Lee, B.K., Y. Yun, and K. Park, PLA micro-and nano-particles. Advanced drug delivery reviews, 2016. 107: p. 176-191.
55. Sahay, G., D.Y. Alakhova, and A.V. Kabanov, Endocytosis of nanomedicines. Journal of controlled release, 2010. 145(3): p. 182-195.
56. Kohane, D.S., Microparticles and nanoparticles for drug delivery. Biotechnology and bioengineering, 2007. 96(2): p. 203-209.
57. Commandeur, S., H.M. Van Beusekom, and W.J. Van Der Giessen, Polymers, Drug Release, and Drug‐Eluting Stents. Journal of interventional cardiology, 2006. 19(6): p. 500-506.
58. Gentile, P., et al., An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. International journal of molecular sciences, 2014. 15(3): p. 3640-3659.
59. Makadia, H.K. and S.J. Siegel, Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 2011. 3(3): p. 1377-1397.
60. Crucho, C.I. and M.T. Barros, Polymeric nanoparticles: A study on the preparation variables and characterization methods. Materials Science and Engineering: C, 2017. 80: p. 771-784.
61. Malinovskaya, Y., et al., Delivery of doxorubicin-loaded PLGA nanoparticles into U87 human glioblastoma cells. International journal of pharmaceutics, 2017. 524(1-2): p. 77-90.
62. Moreno, D., et al., Pharmacodynamics of cisplatin-loaded PLGA nanoparticles administered to tumor-bearing mice. European Journal of Pharmaceutics and Biopharmaceutics, 2010. 74(2): p. 265-274.
63. Sun, D., et al., Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease. Colloids and Surfaces B: Biointerfaces, 2016. 148: p. 116-129.
64. Yang, S.C., et al., Polyketal copolymers: a new acid-sensitive delivery vehicle for treating acute inflammatory diseases. Bioconjugate chemistry, 2008. 19(6): p. 1164-1169.
65. Lee, S., et al., Polyketal microparticles: a new delivery vehicle for superoxide dismutase. Bioconjugate chemistry, 2007. 18(1): p. 4-7.
66. Sy, J.C., et al., Sustained release of a p38 inhibitor from non-inflammatory microspheres inhibits cardiac dysfunction. Nature materials, 2008. 7(11): p. 863.
67. Fu, L., Y. Hu, and H.-Z. Lu, Overviews of reviews on patient compliance with medication protocols used in highly active antiretroviral therapy. International Journal of Nursing Sciences, 2015. 2(1): p. 61-65.
68. Yue, Y., et al., Synergistic inhibitory effects of naproxen in combination with magnolol on TPA-induced skin inflammation in mice. RSC Advances, 2016. 6(44): p. 38092-38099.
69. Zuo, G.-Y., et al., In vitro synergism of magnolol and honokiol in combination with antibacterial agents against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). BMC complementary and alternative medicine, 2015. 15(1): p. 425.
70. Sinha, A., et al., Methotrexate used in combination with aminolaevulinic acid for photodynamic killing of prostate cancer cells. British journal of cancer, 2006. 95(4): p. 485.
71. Wei, X.-Q., et al., Synergistic anticancer activity of 5-aminolevulinic acid photodynamic therapy in combination with low-dose cisplatin on Hela cells. Asian Pacific Journal of Cancer Prevention, 2013. 14(5): p. 3023-3028.
72. Zhao, L., M.G. Wientjes, and J.L. Au, Evaluation of combination chemotherapy: integration of nonlinear regression, curve shift, isobologram, and combination index analyses. Clinical Cancer Research, 2004. 10(23): p. 7994-8004.
73. 張家錞, 適合製備奈米顆粒之聚縮酮高分子及研究其抗發炎特性.國立台灣科技大學 醫學工程研究所. 2018.
74. Acharya, S. and S.K. Sahoo, PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Advanced drug delivery reviews, 2011. 63(3): p. 170-183.
75. Sun, T., et al., Engineered nanoparticles for drug delivery in cancer therapy. Angewandte Chemie International Edition, 2014. 53(46): p. 12320-12364.
76. Bao, Z., et al., Determination of the dissociation constants of magnolol and honokiol by UV spectrophotometry. Journal of Yunnan University (Natural Sciences), 2004. 26(1): p. 66-69.
77. Guan, Y., et al., Preparation of ALA‐loaded PLGA nanoparticles and its application in PDT treatment. Journal of Chemical Technology and Biotechnology, 2016. 91(4): p. 1128-1135.
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top