跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/17 04:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高振原
研究生(外文):Cheng-Yuan Kao
論文名稱:兼具匯率及股市風險的海外投資風險值估計:GARCH族系模型之比較
論文名稱(外文):Value-at-Risk Estimations of Foreign Investments Involving Exchange Rate and Stock Market Risks - A Comparison between GARCH Family Models
指導教授:繆維中繆維中引用關係
指導教授(外文):Wei-Chung Miao
口試委員:陳俊男張琬喻
口試委員(外文):Chun-Nan ChenWoan-Yuh Jang
口試日期:2018-06-26
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:財務金融研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:38
中文關鍵詞:GARCH風險值穿透率
外文關鍵詞:GARCHValue-at-RiskPenetration rate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究欲以一臺灣投資人身分,在面對匯率及股市的雙重風險下,如何有效衡量風險值,有鑑於金融資產的報酬多具有異質變異性(heteroscedasticity)及波動叢聚(volatility clustering)的現象,且跨市場跨商品之間可能存有相關性,故除了基本的單變量(univariate) GARCH (Generalized Autoregressive Conditional Heteroscedastic)模型及IGARCH (Integrated GARCH)模型外,也考量可捕捉變數之間的固定相關係數-多變量(multivariate) CCC-GARCH (Constant Conditional Correlation GARCH)模型,最後採用穿透率做為精確度的衡量指標。
研究變數採用臺幣對人民幣匯率以及華夏上證50,實證結果顯示,在八年的樣本內資料中,可以捕捉變數之間的固定相關係數CCC-GARCH模型能得到較符合信賴水準的穿透率,表示若已知資產之間存在關聯性,應該採用更複雜的模型,以得到更精確的風險值;IGARCH在基金報酬率上所得到的穿透率比匯率報酬精確,顯示該基金變數具有波動持久性的特徵;此外,在分配假設中,t分配能得到較符合信賴水準的穿透率,表在金融資產報酬率因極端值較多並非呈現傳統假設的常態分配,能夠透過有厚尾(fat-tail)現象的t分配表示真實情況。因此,本研究建議當在估計雙資產的風險值時,可透過t分配假設下CCC-GARCH模型,以獲得最精確的風險值估計值。
This thesis studies the effective measurement of Value-at-Risk (VaR) when investors hold positions involving duel risks from exchange rate market and foreign stock market. GARCH family models are used to incorporate the conditional heteroskedasticity of each individual asset. To further incorporate the correlation between assets, we apply the CCC-GARCH model to improve the performance of VaR estimation. The accuracy of VaR estimation is examined by penetration rates.
The empirical results show that the CCC-GARCH model outperforms other competing models. In the measure of correlation between two assets, models considering correlation across assets are better suited for the estimation of VaR. In addition, the performance of ETF is superior to exchange rate in IGARCH model, showing the phenomenon of volatility persistence. Furthermore, t distribution provides a better estimation than normal distribution revealing the return distribution exhibits tail-fatness. Because of the occurrence of the extreme value, t distribution with the character of fat-tail can reflect the practical situation of financial markets for VaR estimation.
摘 要 I
ABSTRACT II
誌 謝 III
目 錄 IV
圖目錄 VI
表目錄 VII
第壹章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究流程與架構 3
第貳章 文獻回顧 5
第一節 波動模型的探討 5
第二節 風險值估計方法 5
第三節 國內外實證研究 7
第參章 研究方法 9
第一節 風險值估計模型 9
第二節 單根檢定 10
第三節 ARCH效果檢定 11
第四節 GARCH模型 12
第五節 IGARCH模型 13
第六節 固定條件相關係數模型 13
第七節 小結 14
第肆章 實證結果 15
第一節 資料來源 15
第二節 敘述統計分析與檢定 17
第三節 單根檢定 18
第四節 ARCH效果檢定 18
第五節 參數估計 20
第六節 回溯測試 30
第伍章 研究結論與建議 32
第一節 研究結論 32
第二節 研究限制 33
第三節 研究建議 33
參考文獻 35
一、中文文獻 35
二、英文文獻 36
1.林楚雄、邱瓊儀、高子荃「結合GARCH 模型與極值理論的風險值模型」,管理學報,22卷1期,2005年,133−154頁。
2.李沃牆、柯中偉,「外匯投資組合之風險值評估-分量迴歸的應用」,中原企管評論 9卷1期,2011年4月,97−116頁。
3.涂惠娟、蔡垂君,「臺指選擇權風險值之研究」,文大商管學報,11卷2期,2006年,57−69頁。
4.蘇榮斌、黃孟祥,「風險值之預測:以臺灣、韓國、新加坡及馬來西亞等國家股票市場為例」,中華技術學院學報 39期,2008年12月,181−198頁
5.蘇榮斌,「美國股票市場風險值之估計」,中華科技大學學報 48期,2011年7月,179−199頁。
6.Beder, T.S., 1995. VAR: Seductive but Dangerous. Financial Analysts Journal, 51(5), pp.12-24.
7.Bera, A.K. and J. S. Roh, 1991. “A Moment Test of the Consistency of the Correlation in the Bivarite GARCH Model,” Mimeo, Department of Economics, University of Illinois at Urbana-Champaign.
8.Bollerslev, T., 1986. Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31(3), pp.307-327.
9.Bollerslev, T., 1987. A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return. The Review of Economics and Statistics, pp.542-547.
10.Bollerslev, T., 1990. Modelling the Coherence in Short-Run Nominal Exchange Rates: A Multivariate Generalized ARCH Model. The Review of Economics and Statistics, pp.498-505.
11.Bollerslev T, Chou RY, Kroner KF. ARCH Mmodeling in Finance: A Review of the Theory and Empirical Evidence. Journal of Econometrics. 1992 Apr 1;52(1-2):5-9.
12.Cassuto, A.E., 1995. Non-Normal Error Patterns: How to Handle Them. The Journal of Business Forecasting, 14(2), p.15.
13.Chou, R.Y.T., 2005. Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model. Journal of Money, Credit, and Banking, 37(3), pp.561-582.
14.Danielsson, J. and de Vries, C.G., 1997. Tail Index and Quantile Estimation with Very High Frequency Data. Journal of Empirical Finance, 4(2-3), pp.241-257.
15.Dickey, D.A. and Fuller, W.A., 1981. Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. Econometrica: Journal of the Econometric Society, pp.1057-1072.
16.Engle, R.F., 1982. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Unflation. Econometrica: Journal of the Econometric Society, pp.987-1007.
17.Engle, R.F. and Bollerslev, T., 1986. Modelling the Persistence of Conditional Variances. Econometric Reviews, 5(1), pp.1-50.
18. Engle, R., 2002. Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models. Journal of Business & Economic Statistics, 20(3), pp.339-350.
19.Giot, P. and Laurent, S., 2003. Market Risk in Commodity Markets: A VaR Approach. Energy Economics, 25(5), pp.435-457.
20.Hendricks, D., 1997. Evaluation of Value-at-Risk Models Using Historical Data. Economic Policy Review, 2(1).
21.Jorion, P., 2001. Value at Risk: The New Benchmark for Managing Financial Risk. Vol. 2. New York: McGraw-Hill.
22.Markowitz, H., 1952. Portfolio Selection. Journal of Finance, 7(1), pp.77-91.
23.Mandelbrot, B.B., 1997. The Variation of Certain Speculative Prices. In Fractals and Scaling in Finance. Springer, New York, NY. pp.371-418
24.McNeil, A.J. and Frey, R., 2000. Estimation of Tail-Related Risk Measures for Heteroscedastic Financial Time Series: An Extreme Value Approach. Journal of Empirical Finance, 7(3-4), pp.271-300.
25.Mittnik, S. and Paolella, M.S., 2000. Conditional Density and Value‐at‐Risk Prediction of Asian Currency Exchange Rates. Journal of Forecasting, 19(4), pp.313-333.
26.Nelson, D.B., 1991. Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica: Journal of the Econometric Society, pp.347-370.
27.Pritsker, M., 1997. Evaluating Value at Risk Methodologies: Accuracy Versus Computational Time. Journal of Financial Services Research, 12(2-3), pp.201-242.
28.Politis, D.N., 2004. A Heavy-Tailed Distribution for ARCH Residuals with Application to Volatility Prediction.
29.van den Goorbergh RW, Vlaar PJ. Value-at-Risk Analysis of Stock Returns Historical Simulation, Variance Techniques or Tail Index Estimation?. De Nederlandsche Bank NV; 1999 Mar.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊