跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/18 07:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:忻辰
研究生(外文):Chen Shin
論文名稱:熱損失與固體循環量於化學迴路製程之模擬與分析
論文名稱(外文):Simulation and Analysis of Heat Loss and Solid Circulation Rate for Chemical Looping Process
指導教授:李豪業
指導教授(外文):Hao-Yeh Lee
口試委員:顧洋曾堯宣
口試委員(外文):Young KuYao-Hsuan Tseng
口試日期:2018-07-17
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:110
中文關鍵詞:化學迴路製程熱損失固體循環量
外文關鍵詞:Chemical Looping ProcessHeat LossSolid Circulation Rate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的主要研究標的為化學迴路產氫程序及化學迴路燃燒程序。為模擬現場真實之情形,此研究將系統的熱損失及載氧體循環量與空氣流量之關係式放入模擬中考慮。化學迴路產氫程序主要採用移動床反應器,由於製程上的硬體設備相當龐大,且未來製程規模放大的緣故,外部加熱器之熱傳效果必定會隨著反應器尺寸之增加而降低。且此製程操作於900 oC以上,故熱損失的效應於程序中是不可忽略的。因此本研究探討反應器假設於恆溫及絕熱兩種模擬方式下,在不同溫度條件時熱損失對系統最大產氫量之影響。
化學迴路燃燒程序在實際操作上,載氧體循環量與空氣流量為相依的關係,故本研究將載氧體循環量與空氣流量之關係式加入於模擬中,探討不同的載氧體惰性配比以及操作溫度條件對系統之影響。最後,藉由不斷提高空氣流量及載氧體循環量,以達到預設溫度950 oC之熱平衡條件,探討二者對燃料轉化率之影響,並對此結果進行分析。
結果顯示,化學迴路產氫程序於恆溫條件下,操作在750 oC有最佳產氫量之結果,其熱損失影響最小;絕熱條件下,載氧體在燃料反應器之進料溫度操作於低溫時,能夠容忍較多的熱損失量,產氫量下降幅度較小。化學迴路燃燒程序上,由於關係式的影響,載氧體惰性配比與載氧體循環量呈反比關係,但與空氣流量則呈正比關係。載氧體在燃料反應器之進料溫度操作在高溫下,由於載氧體在空氣反應器之進出口溫差較小,達熱平衡條件所需移除的熱能較少,故空氣流量及載氧體循環量較低。研究中顯示,系統操作於2.89×Rmin ~ 2.90×Rmin範圍內,在系統中循環的載氧體由Fe3O4相態轉變成以Fe2O3相態為主,當空氣反應器內再無Fe3O4相態載氧體轉化時,則系統達到穩定狀態。
In this thesis, heat loss of the system and relationship between the oxygen carries circulation rate and the air flowrate were studied to meet the actual operating conditions for chemical looping process. The moving bed reactor was used in the chemical looping hydrogen production process. Due to the scales of reactor are quite large, the heat transfer effect of the external heater must be reduced as increasing the size of the reactors. Therefore, this study investigated how the heat loss affects the maximum hydrogen yield of the system in different temperature conditions under isothermal and adiabatic simulation.
Under the actual operations of the chemical looping combustion process, the oxygen carrier circulation rate and the air flow are dependent on each other. Hence, the relationship between the oxygen carrier circulation rate and the air flow is developed, and the effects of different inert support ratio of oxygen carrier and operating temperatures are discussed. Leave it at that, the chemical looping combustion process would be maintained at the heat balance condition by raising the air flowrate and the oxygen carrier circulation rate finally. Then, the result of fuel conversion would be analyzed.
In the isothermal simulation, as operated at 750 oC, the chemical looping hydrogen production process would have the maximum hydrogen yield and minimum impact of heat loss. And yet, the system can tolerate the larger heat loss with a smaller decrease of hydrogen yield when operating at the lower temperature in the adiabatic simulation. Because of the influence of the relationship, the inert support ratio of oxygen carrier is directly proportional to the air flow but indirectly proportional to oxygen carrier circulation rate. The results show that the minimum oxygen carrier circulation rate and air flow rate could be found when the fuel reactor inlet temperature is higher. The circulating oxygen carrier changed from the Fe3O4 to the Fe2O3 when the system was operated in 2.89 ~ 2.90 times Rmin. Until there is no Fe3O4 in the outlet of air reactor, the system is stable.
致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1前言 1
1.2 文獻回顧 4
1.3 研究動機與目的 23
1.4 組織章節 24
第二章 熱力學與動力學 25
2.1 前言 25
2.2 熱力學 26
2.3 動力學 27
第三章 熱損失於化學迴路產氫程序 31
3.1 前言 31
3.2 模型建立 32
3.3 建立比對基準之初始個案 35
3.4 熱損失之預估方式及個案規劃 37
3.5 研究方法 40
3.6 恆溫系統下之結果探討 43
3.7 絕熱系統下之結果探討 49
第四章 固體循環量於化學迴路燃燒程序 65
4.1 前言 65
4.2 模型建立 65
4.3 研究方法 67
4.4 絕熱條件下操作變數對系統之影響 75
4.5 載氧體循環量與空氣流量之關係式 81
4.6 燃料轉化率之趨勢分析 87
第五章 結論與未來展望 90
結論 90
未來展望 93
參考文獻 94
Andrus, H.E., Chiu, J.H., Thibeault, P.R. Alstom’s Chemical Looping Combustion Coal Power Technology Development Prototype. 1st International Conference on Chemical Looping, Lyon, France. 2010.
Adánez, J., Abad, A., Garcia-Labiano, F., Gayán, P., de-Deigo, L.F. Progress in Chemical-Looing Combustion and Reforming Technologies. Prog. Energy Combust. Sci. 2012; 38: 215–282.
Bayham, S.C., Kim, H.R., Wang, D., Tong, A., Zeng, L., McGiveron, O., Kathe, M.V., Chung, E., Wang, W., Wang, A., Majumder, A., Fan, L.S. Iron-Based Coal Direct Chemical Looping Combustion Process: 200 h Continuous Operation of a 25 kWth Sub-pilot Unit. Energy Fuels. 2013, 27: 1347−1356.
Bayham, S., McGiveron, O., Tong, A., Chung, E., Kathe, M., Wang, D., Zeng, L., Fan L.S. Parametric and Dynamic Studies of an Iron-Based 25-kWth Coal Direct Chemical Looping Unit using Sub-Bituminous Coal. Applied Energy. 2015; 145: 354−363.
Cabello, A., Dueso, C., Garcia-Labiano, F., Gayan, P., Abad, A., de Diego, L.F., Adanez, J. Performance of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier with CH4 and H2S in a 500Wth CLC unit. Fuel. 2014, 121: 117−125.
Chiu, P.C., Ku, Y., Wu, H.C., Kuo, Y.L., Tseng, Y.H. Chemical Looping Combustion of Polyurethane and Polypropylene in an Annular Dual-tube Moving Bed Reactor with Iron-Based Oxygen Carrier. Fuel, 2014, 135: 146−152.
Ennenbach, F. and Kluger, K., 2012, “Challenges for 2nd Generation Technologies Like Chemical and Carbonate Looping from an Industry Point of View,” 2nd Intemational Conference on Chemical Looping, 26−28 September, Darmstadt, Germany. 2012.
Fan, L.S. Chemical looping systems for Fossil Energy Conservations. John-Wiley and sons. 2010
Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H., Srivastava, R.D. Advances in CO2 capture technology -The U.S. Department of Energy’s Carbon Sequestration Program. Int. J. Greenhouse Gas Control. 2008; 2: 9−20.
Fan, L.S. Chemical looping Partial Oxidation: Gasification, Reforming and Chemical Syntheses. Cambridge University Press. 2017
Ishida, M.; Takeshita, K.; Susuki, K.; Ohba, T. Application of Fe2O3-Al2O3 Composite Particles as Solid Looping Material of the Chemical Loop Combustor. Energy Fuels. 2005, Vol 19, pp. 2514–2518
Jukkola, G., Liljedahl, G., Nsakala, N. Y., Morin, J.-X., & Andrus, H. An Alstom vision of future CFB technology based power plant concepts. 18th international conference on fluidized bed combustion, Toronto, Canada, May 22 − 25, 2005, (pp. 109 - 120)
Kolbitsch, P., Pröll, T., Bolhar-Nordenkampf, J., Hofbauer, H. Operating Experience with Chemical Looping Combustion in a 120 kW Dual Circulating Fluidized Bed (DCFB) Unit. Energy Procedia. 2009, 1: 1465–1462.
Ku, Y., Wu, H.C., Chiu, P.C., Tseng, Y.H., Kuo, Y.L. Methane Combustion by Moving Bed Fuel Reactor with Fe2O3/Al2O3 Oxygen Carriers. Applied Energy. 2014, 113: 1909−1915.
Kathe, M.V., Empfield, A., Na, J., Blair, E., Fan, L.S. Hydrogen Production from Natural Gas Using an Iron-Based Chemical Looping Technology: Thermodynamic simulations and process system analysis. Applied Energy. 2016, 165: 183–201.
Linderholm, C., Abad, A., Mattisson, T., Lyngfelt, A. 160 h of Chemical-looping Combustion in a 10 kW Reactor System with a NiO-based Oxygen Carrier. Int. J. Greenhouse Gas Control. 2008, 2:520–530.
Linderholm, C., Mattisson, T., Lyngfelt, A. Long-term Integrity Testing of Spray-dried Particles in a 10-kW Chemical-looping Combustor Using Natural Gas as Fuel. Fuel. 2009, 88: 2083–2096.
Lyngfelt, A. Oxygen Carriers for Chemical Looping Combustion-4000 h of Operational Experience. Oil and Gas Science and Technology. 2011, 66(2): 161–172.
Lyngfelt, A., & Thunman, H., Chemical-looping combustion: design, construction and 100 h of operational experience of a 10 kW prototype. In D. Thomas (Ed.), Capture and separation of carbon dioxide from combustion: Vol. 1. Carbon dioxide capture for storage in deep geologic formations e results from the CO2 capture project. London: Elsevier, ISBN 0080445705. 2004
Li, F., Zeng, L., Fan, L.S. Biomass Direct Chemical Looping Process: Process Simulation. Fuel. 2010a, 89: 3773−3784.
Li, F., Zeng, L., Velazquez-Vargas, L.G., Zachary, Yoscovits, Fan, L.S. Syngas Chemical Looping Gasification Process: Bench-Scale Studies and Reactor Simulations. AIChE J. 2010 Aug; 56 (8):2186−2199.
Markstrom, P., Linderholm, C., Lyngfelt, A. Operation of a 100 kW chemical-looping combustor with Mexican petroleum coke and Cerrejón coal. Applied Energy. 2014, 113:1830−1835.
Mattisson, T., Keller, M., Linderholm, C., Moldenhauer, P., Rydén, M., Leion, H., Lyngfelt, A. Chemical-looping technologies using circulating fluidized bed systems: Status of development. Fuel Processing Technology. 2018, 172:1−12.
Orth, M., Ströh, J., Epple, B. Design and Operation of a 1 MWth Chemical Looping Plant, 2nd Intemational Conference on Chemical Looping, 26−28 September, Darmstadt, Germany 2012.
Porrazzo, R., White, G., Ocone, R. Aspen Plus simulations of fluidised beds for chemical looping combustion. Fuel. 2014, 136: 46−56.
Ryu, H.J., Jo, S.H., Park, Y., Bae, D.H., Kim, S. Long Term Operation Experience in a 50 kWth Chemical Looping Combustor Using Natural Gas and Syngas as Fuels. 1st International Conference on Chemical Looping, Lyon, France. 2010.
Shen, L., Wu, J., Xiao, J., Song, Q., Xiao, R. Chemical Looping Combustion of Biomass in a 10 kWth Reactor with Iron Oxide as an Oxygen Carrier. Energy Fuels. 2009, 23: 2948–2505.
Siriwardane, R., Tian, H. J., Miller, D., & Richards, G. Fluidized bed testing of commercially prepared MgO-promoted hematite and CuO-Fe2O3 mixed metal oxide oxygen carriers for methane and coal chemical looping combustion. Applied Energy. 2015, 157: 348−357.
Sridhar, D., Tong, A., Kim, H., Zeng, L., Li, F., Fan, L.S. Syngas Chemical Looping Process: Design and Construction of a 25 kWth Sub-pilot Unit. Energy Fuels. 2012, 26:2292–2302.
Shen, L., Wu, J., Gao, Z., Xiao, J. Characterization of chemical looping combustion of coal in a 1 kWth reactor with a nickel-based oxygen carrier. Combustion and Flame. 2010, 157: 934−942.
Shen, T., Wu, J., Shen, L., Yan, J., Jiang, S. Chemical Looping Gasification of Coal in a 5 kWth Interconnected Fluidized Bed with a Two-Stage Fuel Reactor. Energy Fuels. 2018, 32: 4291−4299.
Vilches, T.B., Lind, F., Rydén, M., Thunman, H. Experience of more than 1000 h of operation with oxygen carriers and solid biomass at large scale. Applied Energy. 2017, 190:1174−1183
Wu, H.C., Ku, Y., Tsai, H.H., Kuo, Y.L., Tseng, Y.H. Rice Husk as Solid Fuel for Chemical Looping Combustion in an Annular Dual-tube Moving Bed reactor. Chemical Engineering Journal, 2015, 280:82–89.
Zeng, L., He, F., Li, F., Fan, L.S. Coal-Direct Chemical Looping Gasification for Hydrogen Production: Reactor Modeling and Process Simulation. Energy & Fuels. 2012; 26:3680−3690.
Zeng, L., Tong, A., Kathe, M., Bayham, S., Fan, L.S. Iron Oxide Looping for Natural Gas Conversion in a Countercurrent Moving Bed Reactor. Applied Energy. 2015, 157: 338–347.
彭鏡禹,化學迴路技術發展概況與展望,中興工程,第124期。111 – 119 (2014)
邱炳嶔,Fe2O3/Al2O3載氧體應用於化學迴圈程序移動床燃料反應器之評估研究,台灣科技大學化工所碩士論文 (2014)
盧彥劭,煤炭與甲烷燃料產氫之化學迴路至成模擬研究,台灣科技大學化工所碩士論文 (2016)
曾子維,交聯式流體化床之循環穩定性評估與計算流體力學模擬應用於化學迴路燃燒程序之研究,台灣科技大學機械所碩士論文 (2016)
陳君霖,應用不同燃料於化學迴路產氫製程之模擬與操作變數分析研究,台灣科技大學化工所碩士論文 (2017)
張世瀚,以交聯式流體化床運行化學迴圈程序於溶劑處理之應用,台灣科技大學化工所碩士論文 (2018)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊