跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/19 01:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳奕佑
研究生(外文):Yi-You Chen
論文名稱:基於骨架資訊並利用N-旋轉對稱向量場之重新網格化
論文名稱(外文):Skeleton based Remeshing using N-RoSy Field
指導教授:賴祐吉姚智原
指導教授(外文):Yu-Chi LaiChih-Yuan Yao
口試委員:朱宏國黃大源
口試委員(外文):Hung-Kuo ChuDa-Yuan Huang
口試日期:2018-06-15
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:72
中文關鍵詞:網格重製骨架調和函數流場設計獎路旋轉對稱向量場
外文關鍵詞:RemeshingQuadrangulationSkeletonHarmonic FunctionN-Rotational Symmetry Field
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
現今三維模型在各個領域中普遍被使用,其中模型的產生方式,大多是使用三維建模軟體或三維掃描,然而透過三維掃描得到的三維模型,其混亂和不規則的網格結構讓後續應用上不太方便,因此,必須對網格進行重製。網格重製一直是電腦圖學領域核心研究對象之一,目的是要讓原始模型的混雜網格結構可以重新計算並得到整齊、規律和漂亮的網格結構。本研究結合了兩種骨架導向及表面流場兩種網格重製方法,利用骨架資訊得到對應網格分區,並根據分區資訊進行流場設計以及利用整體參數化的方法達成網格重製,使產生的網格同時具有基於流場的方法在複雜分支區域的適應性,及以骨架為基礎的方法中,重製的網格符合骨架走向的呈現,並且網格可根據骨架進行拆解的特性。
3D models are widely used in every field today. The most common ways to create 3D models are 3D modeling softwares and scanning. However, the models acquired with scanning have the issue of irregular geometric structure, limiting their applicability. A remeshing process is needed to make those models more applicable. Remeshing has been one of the popular subjects in computer graphics. The purpose of remeshing is to reconstruct a mesh into a more uniformly and orderly shaped mesh.In this paper, a new method is proposed to improve the remeshing process that
computing a coarse quad structure that fits with skeleton by subdivided boxes and projecting this structure onto origin model. The problem with the method is that all subdivided boxes have to be recalculated when any single box is changed due to the boxes being interconnected. Another issue is that the fold-overs tend to happen on the result mesh when the torsions of boxes are not properly handled. In the proposed method, models are first divided into partitions based on skeleton data, and then line fields and mesh grid are generated according to the types each partition. Because the method only considers the original mesh, errors caused by projection and the complex process of place subdivided boxes are avoided.
中文摘要......................................iii
Abstract.......................................iv
目錄............................................v
表目錄........................................vii
圖目錄.......................................viii
符號標記使用說明................................xi
1 介紹..........................................1
1.1 研究背景與動機..............................1
1.2 論文貢獻...................................2
1.3 論文架構...................................3
2 相關研究......................................4
3 方法總覽......................................7
3.1 網格處理專門用語............................7
3.2 系統流程...................................8
4 骨架擷取.....................................11
4.1 網格收縮..................................11
4.2 骨架提取..................................13
5 網格分割與分區網格重製.........................16
5.1 基於骨架的網格分割.........................16
5.2 最小割(Minimal Cut)區塊分割................18
5.3 區塊邊緣重製...............................22
6 四角化網格重製................................27
6.1 流向限制提取...............................27
6.2 旋轉對稱向量場(N-RoSy Field)計算...........31
6.3 基於4路旋轉對稱向量場的四角化重製............36
7 實驗結果與討論................................40
8 結論與未來發展................................56
參考文獻.......................................57
[1] C.Y. Yao, H. K. Chu, T. Ju, T. Y. Lee, "Compatible quadrangulation by sketching," Computer Animation and Virtual Worlds, vol. 20, pp. 101–109, 2009.
[2] F. Usai, M. Livesu, E. Puppo, M. Tarini, and R. Scateni, “Extraction of the quad layout of a triangle mesh guided by its curve skeleton," ACM Transactions on Graphics (TOG), vol. 35, no. 1, p. 6, 2015.
[3] C.-Y. Yao, M.-T. Chi, T.-Y. Lee, and T. Ju, "Region-based line field design using harmonic functions,” IEEE transactions on visualization and computer graphics, vol. 18, no. 6, pp. 902-913, 2012.
[4] D. Bommes, H. Zimmer, and L. Kobbelt, "Mixed-integer quadrangulation," in ACM Transactions On Graphics (TOG), vol. 28, p. 77, 2009.
[5] V. Guillemin and A. Pollack, Differential topology, vol. 370. American Mathematical Soc., 2010.
[6] O. K.-C. Au, C.-L. Tai, H.-K. Chu, D. Cohen-Or, and T.-Y. Lee, "Skeleton extraction by mesh contraction," in ACM Transactions on Graphics (TOG), vol. 27, p. 44, 2008.
[7] S. Katz and A. Tal, Hierarchical mesh decomposition using fuzzy clustering and cuts, vol. 22. ACM, 2003.
[8] K. Lawonn, R. Gasteiger, C. Rössl, and B. Preim, "Adaptive and robust curve smoothing on surface meshes," Computers & Graphics, vol. 40, pp. 22–35, 2014.
[9] J. Palacios and E. Zhang, "Rotational symmetry field design on surfaces," in ACM Transactions on Graphics (TOG), vol. 26, p. 55, 2007.
[10] E. Zhang, K. Mischaikow, and G. Turk, "Vector field design on surfaces," ACM
Transactions on Graphics (ToG), vol. 25, no. 4, pp. 1294–1326, 2006.
[11] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr, "Implicit fairing of irregular meshes using diffusion and curvature flow,” in Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp. 317–324, ACM Press/Addison-Wesley Publishing Co., 1999.
[12] M. Garland and P. S. Heckbert, "Surface simplification using quadric error metrics,” in Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pp. 209–216, ACM Press/Addison-Wesley Publishing Co., 1997.
[13] E. Welzl, "Smallest enclosing disks (balls and ellipsoids)," in New results and new trends in computer science, pp. 359-370, Springer, 1991.
[14] S. Katz, G. Leifman, and A. Tal, "Mesh segmentation using feature point and core extraction," The Visual Computer, vol. 21, no. 8-10, pp. 649–658, 2005.
[15] X. Tricoche, G. Scheuermann, H. Hagen, and S. Clauss, "Vector and tensor field topology simplification, tracking, and visualization," in PhD. thesis, Schriftenreihe Fachbereich Informatik (3), Universität, Citeseer, 2002.
[16] G. Scheuermann, H. Kruger, M. Menzel, and A. P. Rockwood, "Visualizing nonlinear vector field topology," IEEE Transactions on Visualization and Computer
Graphics, vol. 4, no. 2, pp. 109-116, 1998.
[17] D. Kirsanov and S. J. Gortler, Minimal discrete curves and surfaces. Harvard University, 2004.
[18] M. S. Floater, "Mean value coordinates," Computer aided geometric design, vol. 20, no. 1, pp. 19–27, 2003.
[19] J. Palacios and E. Zhang, "Interactive visualization of rotational symmetry fields on surfaces," IEEE transactions on visualization and computer graphics, vol. 17, no. 7, pp. 947–955, 2011.
[20] D. Bommes, B. Lévy, N. Pietroni, E. Puppo, C. Silva, M. Tarini, and D. Zorin, "Quad-mesh generation and processing: A survey,” in Computer Graphics Forum, vol. 32, pp. 51-76, Wiley Online Library, 2013.
[21] N. Ray, W. C. Li, B. Lévy, A. Sheffer, and P. Alliez, "Periodic global parameterization," ACM Transactions on Graphics (TOG), vol. 25, no. 4, pp. 1460-1485, 2006.
[22] F. Kälberer, M. Nieser, and K. Polthier, "Quadcover-surface parameterization using branched coverings,” in Computer graphics forum, vol. 26, pp. 375–384, Wiley Online Library, 2007.
[23] S. Dong, S. Kircher, and M. Garland, "Harmonic functions for quadrilateral remeshing of arbitrary manifolds,” Computer aided geometric design, vol. 22, no. 5, pp. 392 423, 2005.
[24] O. Sorkine and D. Cohen-Or, "Least-squares meshes," in Shape Modeling Applications, 2004. Proceedings, pp. 191-199, 2004.
[25] M. Marinov and L. Kobbelt, "Direct anisotropic quad-dominant remeshing," in Computer Graphics and Applications, 2004. PG 2004. Proceedings. 12th Pacific Conference on, pp. 207-216, IEEE, 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top