|
[1] W. Chung, H. Kim, Y. Yoo, C. Moon, and J. Park, “The detection and following of human legs through inductive approaches for a mobile robot with a single laser range finder,” IEEE Trans. Ind. Electron., vol. 59, no. 8, pp. 3156–3166, Aug. 2012. [2] L. Li, S. Yan, X. Yu, Y. K. Tan, and H. Li, “Robust multiperson detection and tracking for mobile service and social robots,” IEEE Trans. Syst., Man, Cybern., Part B, vol. 42, no. 5, pp. 1398-1412, Oct. 2012. [3] J. S. Hu, J. J Wang, and D. M. Ho, “Design of sensing system and anticipative behavior for human following of mobile robots,” IEEE Trans. Ind. Electron., vol. 61, no. 4, pp. 1916-1927, Apr. 2014. [4] H. S. Kim and J. B. Song, “Multi-DOF counterbalance mechanism for a service robot arm,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 6, pp. 1756-1766, Dec. 2014. [5] E. Kayacan, H. Ramon, and W. Saeys, “Robust trajectory tracking error model-based predictive control for unmanned ground vehicles,” IEEE/ASME Trans. Mechatronics, vol. 21, no. 2, pp. 806-814, Apr. 2016. [6] C. L. Hwang and N. W. Chang, “Fuzzy decentralized sliding-mode control of car-like mobile robots in a distributed sensor-network space,” IEEE Trans. Fuzzy Syst., vol. 16, no. 1, pp. 97-109, Feb. 2008. [7] H. C. Huang, “SoPC-based parallel ACO algorithm and its application to optimal motion controller design for Intelligent omnidirectional mobile robots,” IEEE Trans. Ind. Informatics, vol. 9, no. 4, pp. 1828-1838, Nov. 2013. [8] J. C. L. Barreto S., A. G. S. Conceic˜ao, C. E. T. D´orea, L. Martinez, and E. R. de Pieri, “Design and implementation of model-predictive control with friction compensation on an omnidirectional mobile robot,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 2, pp. 467-476, Apr. 2014. [9] H. Kim and B. K. Kim, “Online minimum-energy trajectory planning and control on a straight-line path for three-wheeled omnidirectional mobile robots,” IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 4771-4779, Sep. 2014. [10] M. Zhang and H. H. T. Liu, “Game-theoretical persistent tracking of a moving target using a unicycle-type mobile vehicle,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 6222-6233, Nov. 2014. [11] A. Akhtar, C. Nielsen, and S. L. Waslander, “Path following using dynamic transverse feedback linearization for car-like robots,” IEEE Trans. Robotics, vol. 31, no. 2, pp. 269-279, Apr. 2015. [12] D. Rotondo, V. Puig, F. Nejjari, and J. Romera, “A fault-hiding approach for the switching quasi-LPV fault-tolerant control of a four-wheeled omnidirectional mobile robot,” IEEE Trans. Ind. Electron., vol. 62 , no. 6, pp. 3932-3944, Jun. 2015. [13] J. T. Huang, T. V. Hung, and M. L. Tseng, “Smooth switching robust adaptive control for omnidirectional mobile robots,” IEEE Trans. Contr. Syst. Technol., vol. 23, no. 5, pp. 1986-1994, Sep. 2015. [14] C. Ren and S. Ma, “Generalized proportional integral observer based control of an omnidirectional mobile robot,” Mechatronics, vol. 28, pp. 36-44, 2015. [15] G. Ishigami, K. Iagnemma, J. Overholt, and G. Hudas, “Design, development, and mobility evaluation of an omnidirectional mobile robot for rough terrain,” J. Field Robotics, vol. 32, no. 6, pp. 880–896, 2015. [16] E. J. Jung, B. J. Yi, and W. Kim, “Kinematic and motion planning for a planar multiarticulated omnidirectional mobile robot,” IEEE/ASME Trans. Mechatronics, vol. 20, no.6, pp. 2983-2993, Dec. 2015. [17] J. Yuan, F. Sun, and Y. Huang, “Trajectory generation and tracking control for double-steering tractor-trailer mobile robots with on-axle hitching,” IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7665-7675, Dec. 2016. [18] S. I. Han and J. M. Lee, “Balancing and velocity control of a unicycle robot based on the dynamic model,” IEEE Trans. Ind. Electron., vol. 62, no. 1, pp. 405-413, Jan. 2015. [19] C. L. Hwang, “Comparison of path tracking control of a car-like mobile robot with and without motor dynamics,” IEEE/ASME Trans. Mechatronics, vol. 21, no.4, pp. 1801-1811, Jun. 2016. [20] K. Chu, M. Lee, and M. Sunwoo, “Local path planning for off-road autonomous driving with avoidance of static obstacles,” IEEE Trans. Intell. Transp. Syst., vol. 13, no. 4, pp.1599-1616, Dec. 2012. [21] M. Park, K. Kalyanam, S. Darbha, P. P. Khargonekar, M. Pachter, and P. R. Chandler, “Performance guarantee of an approximate dynamic programming policy for robotic surveillance,” IEEE Trans. Autom. & Sci. Eng., vol. 13, no. 2, pp. 564-578, Apr. 2016. [22] E. N. Hartley, J. L. Jerez, A. Suardi, J. M. Maciejowski, E. C. Kerrigan, and G. A. Constantinides, “Predictive control using an FPGA with application to aircraft control,” IEEE Trans. Contr. Syst. Technol., vol. 22, no. 3, pp. 1006-1017, May 2014. [23] Z. Hajduk, B. Trybus, and J. Sadolewski, “Architecture of FPGA embedded multiprocessor programmable controller,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 6952-6961, May 2015. [24] C. L. Hwang, Y. M. Chen, and C. Jan, “Trajectory tracking of large-displacement piezoelectric actuators using a nonlinear observer-based variable structure control,” IEEE Trans. Control Syst. Technol., vol. 13, no. 1, pp.56-66, Jan. 2005.
|