跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/22 01:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:Hasan Syafik Maulana
研究生(外文):Hasan Syafik Maulana
論文名稱:以數值模擬探討熔融沉積成型式3D列印機內之速度﹑溫度與濃度場
論文名稱(外文):A Numerical Study of the Velocity, Temperature, and Concentration Fields in a Fused Deposition Modeling 3D Printer
指導教授:田維欣
指導教授(外文):Wei-Hsin Tien
口試委員:田維欣林怡均鄭逸琳周振嘉
口試委員(外文):Wei-Hsin TienYi-Jiun Peter LINYih-Lin ChengChen-Chia Chou
口試日期:2018-01-23
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:140
中文關鍵詞:計算流體力學3D列印機熔融沉積成型微粒排放
外文關鍵詞:Computational fluid dynamic3D PrinterFused Deposition Modelingparticle emission
相關次數:
  • 被引用被引用:0
  • 點閱點閱:351
  • 評分評分:
  • 下載下載:89
  • 收藏至我的研究室書目清單書目收藏:0
熔融沉積成型(Fused Deposition Modeling, FDM)式3D列印機是目前最受歡迎的積層製造技術之一。在列印過程中,FDM 3D列印機會釋放出高量之超微顆粒(ultrafine particle, UFP)與揮發性有機物(volatile organic compounds, VOCs)。這些物質來自於列印之線材,通常為熱塑性材料如ABS或PLA。兩種常用材料均有報告指出會在加熱列印過程中排放有害人體之物質,造成健康風險。在本研究中以有限體積法用標準紊流
Fused Deposition Modeling (FDM) 3D printer is one of the most popular additive manufacturing techniques. During the operation of a FDM 3D printer, it may emit high rate of ultrafine particle (UFP) and volatile organic compounds (VOCs). The UFP emission comes from ABS or PLA, the feedstock and product materials of FDM 3D printer. Both materials are confirmed to have health risk for the human body. In this study, a numerical model based on finite volume method and standard
摘要 i
ABSTRACT iii
ACKNOWLEDGEMENTS v
CONTENT vi
NOMENCLATURES ix
LIST OF TABLES xii
LIST OF FIGURES xiii
INTRODUCTION 1
1.1 Motivation 1
1.2 Literature Review 3
1.2.1 Emission of Ultrafine Particle by FDM 3D Printer 3
1.2.2 Computational Fluid Dynamic (CFD) Predictive of Flow, Heat, and Mass Transfer 6
1.2.3 Push and Pull Air Curtain System 7
1.3 Objective 9
1.4 Structure of Thesis 9
MATHEMATICAL FORMULAE AND NUMERICAL METHOD 11
2.1 Governing Equations 11
2.2 Eddy Viscosity Turbulence Model 12
2.3 Standard High Reynold Number k-ε Model 14
2.4 Simulation Software 17
2.5 Problem Descriptions 18
2.6 Grid Generation 20
RESULTS AND DISCUSSION 21
3.1 Flow and Heat Transfer Inside Fused Deposition Modeling (FDM) 3D Printer 21
3.1.1 Effect of Heat Source and Cooling Fan 22
3.1.2 Effect of The Height of the Heater Plate 25
3.1.3 Effect of Variation Nozzle Head Position 27
3.2 Flow and Mass Transfer Inside Fused Deposition Modeling (FDM) 3D Printer with Push and Pull System 30
3.2.1 Effect of Push and Pull System Model in Air Curtain System 31
3.2.2 Effect of Push System Angle in Air Curtain System 35
3.2.3 Effect of Heights of the Heater Plate in Air Curtain System 38
3.2.4 Effect of Printer Head Position in Air Curtain System 40
3.3 Discussions 42
3.3.1 Parameters That Affect the System Performance and Their Interactions 42
3.3.2 Limitations of This Study 43
CONCLUSIONS AND FUTURE WORKS 45
4.1 Conclusions 45
4.2 Future Work 47
BIBLIOGRAPHY 49
CURRICULUM VITAE 139
1. marketsandmarkets.com. 3D Printing Market by Printer Type, Material Type (Metals, Plastics, Ceramics & Others), Material Form (Powder, Liquid, Filament), Process, Technology, Software, Service, Application, Vertical and Geography - Global Forecast to 2022. 2016 April 2016 [cited 2016 April]; Available from: http://www.marketsandmarkets.com/Market-Reports/3d-printing-market-1276.html.
2. ISO/ASTM 52900:2015(E), Standard Terminology for Additive Manufacturing – General Principles –Terminology.
3. J. Unwin, M. R. Coldwell, C. Keen, and J. J. McAlinden, Airborne emissions of carcinogens and respiratory sensitizers during thermal processing of plastics. Ann Occup Hyg, 2013. 57(3): p. 399-406.
4. http://data.europa.eu/eli/reg/2008/1272/oj, European Commission (EC) Regulation No. 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures. 2008.
5. http://monographs.iarc.fr/ENG/Classification/latest_classif.php, International Agency for Research on Cancer (IARC) Monographs on the Evaluation of Carcinogenic Risk to Humans. 2017.
6. B. Stephens, P. Azimi, Z. El Orch, and T. Ramos, Ultrafine particle emissions from desktop 3D printers. Atmospheric Environment, 2013. 79(1): p. 334-339.
7. Yu Zhou, Xiangri Kong, Ailu Chen, and Shijie Cao, Investigation of Ultrafine Particle Emissions of Desktop 3D Printers in the Clean Room. Procedia Engineering, 2015. 121(1): p. 506-512.
8. Y. Kim, C. Yoon, S. Ham, J. Park, S. Kim, O. Kwon, and P. J. Tsai, Emissions of Nanoparticles and Gaseous Material from 3D Printer Operation. Environ Sci Technol, 2015. 49(20): p. 12044-53.
9. Y. L. Deng, S. J. Cao, A. L. Chen, and Y. S. Guo, The impact of manufacturing parameters on submicron particle emissions from a desktop 3D printer in the perspective of emission reduction. Building and Environment, 2016. 104: p. 311-319.
10. P. Azimi, D. Zhao, C. Pouzet, N. E. Crain, and B. Stephens, Emissions of Ultrafine Particles and Volatile Organic Compounds from Commercially Available Desktop Three-Dimensional Printers with Multiple Filaments. Environ Sci Technol, 2016. 50(3): p. 1260-8.
11. N. A. Mohajer, C. Y. Wu, T. Ladun, D. A. Rajon, and Y. Huang, Characterization of particulate matters and total VOC emissions from a binder jetting 3D printer. Building and Environment, 2015. 93(2): p. 293-301.
12. Naoki Kagi, Shuji Fujii, Youhei Horiba, Norikazu Namiki, Yoshio Ohtani, Hitoshi Emi, Hajime Tamura, and Yong Shik Kim, Indoor air quality for chemical and ultrafine particle contaminants from printers. Building and Environment, 2007. 42(5): p. 1949-1954.
13. J. Gao, Y. T. Jian, C. S. Cao, L. Chen, and X. Zhang, Indoor emission, dispersion and exposure of total particle-bound polycyclic aromatic hydrocarbons during cooking. Atmospheric Environment, 2015. 120(1): p. 191-199.
14. L. Wallace, F. Wang, C. Howard-Reed, and A. Persily, Contribution of Gas and Electric Stoves to Residential Ultrafine Particle Concentrations between 2 and 64 nm: Size Distributions and Emission and Coagulation Rates. Environmental Science & Technology, 2008. 42(23): p. 8641-8647.
15. B. Zamora and G. Sancho, Effects of heating intensity on the transient natural convection flows in open cavities. International Journal of Heat and Mass Transfer, 2016. 100: p. 861-875.
16. I. V. Miroshnichenko, M. A. Sheremet, and A. A. Mohamad, Numerical simulation of a conjugate turbulent natural convection combined with surface thermal radiation in an enclosure with a heat source. International Journal of Thermal Sciences, 2016. 109: p. 172-181.
17. M. J. Chern and W. Y. Cheng, Numerical investigation of turbulent diffusion in push-pull and exhaust fume cupboards. Ann Occup Hyg, 2007. 51(6): p. 517-31.
18. R. F. Huang, S. Y. Lin, S. Y. Jan, R. H. Hsieh, Y. K. Chen, C. W. Chen, W. Y. Yeh, C. P. Chang, T. S. Shih, and C. C. Chen, Aerodynamic characteristics and design guidelines of push-pull ventilation systems. Ann Occup Hyg, 2005. 49(1): p. 1-15.
19. R. F. Huang, Y. D. Wu, H. D. Chen, C. C. Chen, C. W. Chen, C. P. Chang, and T. S. Shih, Development and evaluation of an air-curtain fume cabinet with considerations of its aerodynamics. Ann Occup Hyg, 2007. 51(2): p. 189-206.
20. Jia-Kun Chen, Rong Fung Huang, Pei-Yi Hsin, Ching Min Hsu, and Chun-Wann Chen, Flow and Containment Characteristics of an Air-curtain Fume Hood Operated at High Temperatures. Industrial Health, 2012. 50(2): p. 103-114.
21. R. F. Huang and C. I. Chou, Flow and performance of an air-curtain biological safety cabinet. Ann Occup Hyg, 2009. 53(4): p. 425-40.
22. Richard H. Kruse, William H. Puckett, and John H. Richardson, Biological safety cabinetry. Clinical Microbiology Reviews, 1991. 4(2): p. 207-241.
23. S. C. Hu, A. Shiue, J. X. Tu, H. Y. Liu, and R. B. Chiu, Validation of cross-contamination control in biological safety cabinet for biotech/pharmaceutical manufacturing process. Environ Sci Pollut Res Int, 2015. 22(23): p. 19264-72.
24. B. E. Launder and D. B. Spalding, The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 1974. 3(2): p. 269-289.
25. Mentor Graphics, FloVENT Background Theory Reference Guide, Software Version 11.2. 2016, Mentor Graphics Corporation.
26. Jeff Kerns, 3D Printing Tips and Tech: Get to Know Those Acronyms. 2015, http://www.machinedesign.com.
27. Markelapellaniz, Extrusion deposition: Fused Deposition Modeling (FDM). 2016, www.additive3d.com.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top