跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/19 17:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭丞軒
研究生(外文):Cheng-Hsuan Hsiao
論文名稱:無感測器之三相永磁式同步交流伺服馬達故障診斷
論文名稱(外文):Sensorless Fault Diagnosis of Three-phase Permanent Magnet Synchronous AC Servo Motor
指導教授:劉孟昆
指導教授(外文):Meng-Kun Liu
口試委員:藍振洋郭俊良劉孟昆
口試委員(外文):Chen-Yang LanChun-Liang KuoMeng-Kun Liu
口試日期:2018-07-25
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:141
中文關鍵詞:三相永磁同步馬達遺忘因子遞迴最小平方擴展卡爾曼濾波器線上參數估測
外文關鍵詞:three-phase permanent magnet synchronous motorforgetting factor of recursive least squaresextended Kalman filteronline parameter estimation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:1
在常見的永磁同步馬達控制系統中有要求控制精密度高的特點,為機械手臂及電動車主要的致動器,其狀態直接影響系統的性能。目前業界普遍採用馬達狀態監控系統,在馬達上安裝各式感測器如加速規、扭力計及轉速計等,即時感知馬達異常狀況,以達到預知保養的目的。然而架設感測器除了造成成本增加之外,感測器本身也有故障的風險,因此本研究採用線上估測的方法估測永磁馬達動態系統模型參數,以取代感測器的量測。
線上估測馬達系統參數除了能實現無感測器技術控制馬達運轉之外,也能進行馬達的故障診斷。過去文獻使用線上估測方式診斷定子繞阻短路、斷路、溫度變化、磁場漪波等馬達故障,但並未使用估測器估測機械故障造成的異常扭矩情況。因此本研究提出遺忘因子遞迴最小平方及擴展卡爾曼濾波器的混合方法,透過量測電壓與電流即能估測永磁式交流伺服馬達模型的定子電阻、直交軸電感、磁通量、扭矩等五個參數。此估測方法和文獻中提及之估測器相比能識別較多的參數,其估測結果可以做為馬達故障診斷的基礎。
The control system of permanent magnet synchronous motor has the characteristics of the high precision control. It is the main actuator of robot arm and electric vehicle, and its state directly affects the performance of the system. At present, the motor condition monitoring system is widely used in the industry. Various sensors such as the accelerometer, the torque meter and the tachometer are installed on the motor to instantly sense the abnormal condition of the motor and achieve the predictive maintenance. However, the installation of sensors would increase the cost and the sensor itself also has the risk of failure. Therefore, this study uses the online estimation methods to estimate the parameters of the permanent magnet synchronous motor (PMSM) dynamic system model to replace the sensor measurement.
In addition to the implementation of sensorless technology to control the motor operation, the online estimation of the motor parameters can also conduct motor fault diagnosis. Previous literatures used online estimation methods to diagnose motor faults such as stator winding short circuit, open circuit, temperature change, and magnetic field chopping, but they didn’t use the estimator to estimate the abnormal torque caused by the mechanical failure. Therefore, this study proposed a hybrid method of the forgetting factor of recursive least squares and extended Kalman filter. By measuring the voltage and current, the stator resistance, orthogonal axis inductance, magnetic flux and torque of the permanent PMSM model can be estimated. This estimation method can identify more parameters than the estimator mentioned in the literatures, and the estimation result can be used as the foundation for motor fault diagnosis.
摘要 1
ABSTRACT 2
目錄 5
表目錄 8
圖目錄 9
第一章 緒論 14
1.1 前言 14
1.2 研究動機 15
1.3 論文內容簡介 15
第二章 文獻回顧 16
2.1 參考模型適應性系統 16
2.2 狀態觀察器 17
2.3 遺忘因子遞迴最小平方法 18
2.4 擴展卡爾曼濾波器 19
第三章 理論基礎 20
3.1 坐標軸轉換 20
3.2 三相永磁馬達數學模型 22
3.2.1 永磁式馬達介紹 22
3.2.2 表面黏貼式永磁馬達模型 23
3.3 三相變頻器及其控制策略 27
3.3.1 三相變頻器介紹 27
3.3.2 控制策略 32
3.4 估測方法 33
3.4.1 狀態觀察器 33
3.4.2 遺忘因子遞迴最小平方 34
3.4.3 擴展卡爾曼濾波器 35
第四章 模擬流程 39
4.1 狀態觀察器估測流程 39
4.2 遺忘因子遞迴最小平方法估測流程 41
4.3 擴展卡爾曼濾波器估測流程 43
4.4 遺忘遞迴最小平方與擴展卡爾曼混和估測流程 45
第五章 模擬結果與討論 47
5.1 模擬場合規劃 47
5.2 穩態誤差之各估測器比較結果 49
5.3 最大超越量之各估測器比較結果 56
5.4 安定時間之各估測器比較結果 63
5.5 步階負載之各估測器比較結果 70
5.6 各估測器於異常負載的其他估測結果 76
第六章 結論與未來展望 90
6.1 結論 90
6.2 研究貢獻 92
6.3 未來展望 93
參考文獻 94
附錄 A 動態模型參數 98
附錄 B 估測器參數 100
附錄 C 估測參數時域圖 101
[1] I.C.Baik., et al. "Robust nonlinear speed control of PM synchronous motor using adaptive and sliding mode control techniques." IEEE Proceedings-Electric Power Applications Vol. 145 No. 4, pp. 369-376, 1998.
[2] B.N.Mobarakeh, et al. "On-line identification of PMSM electrical parameters based on decoupling control." Industry Applications Conference, 2001. Thirty-Sixth IAS Annual Meeting. Conference Record of the 2001 IEEE. Vol. 1. IEEE, 2001.
[3] L.Liu., and D. A. Cartes. "Synchronisation based adaptive parameter identification for permanent magnet synchronous motors." IET Control Theory & Applications Vol. 1 No. 4, pp. 1015-1022, 2007.
[4] M.Elbuluk, et al. "Neural-network-based model reference adaptive systems for high-performance motor drives and motion controls." IEEE Transactions on Industry Applications Vol.38 No.3 , pp.879-886, 2002.
[5] Y.S.Kim, et al. "MRAS based sensorless control of permanent magnet synchronous motor." SICE 2003 Annual Conference. Vol. 2. IEEE, 2003.
[6] T.Boileau, et al. "Online identification of PMSM parameters: Parameter identifiability and estimator comparative study." IEEE transactions on industry applications Vol. 47 No. 4 , pp. 1944-1957, 2011.
[7] Z.Song, et al. "Inertia identification based on model reference adaptive system with variable gain for AC servo systems." Mechatronics and Automation (ICMA), 2017 IEEE International Conference on. IEEE, 2017.
[8] J.S.Ko, et al. "Precision speed control of pmsm using disturbance observer and system parameter compensator." Power Electronics Specialist Conference, 2003. PESC'03. 2003 IEEE 34th Annual. Vol. 1. IEEE, 2003.
[9] S.Morimoto, et al. "Mechanical sensorless drives of IPMSM with online parameter identification." IEEE Transactions on Industry Applications Vol. 42 No. 5 , pp. 1241-1248, 2006.
[10] S.Ichikawa, et al. "Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory." IEEE Transactions on Industrial Electronics Vol.53 No.2 , pp.363-372, 2006.
[11] S.Ichikawa, et al. "Sensorless control of synchronous reluctance motors based on extended EMF models considering magnetic saturation with online parameter identification." IEEE Transactions on Industry Applications Vol.42 No.5 , pp. 1264-1274, 2006.
[12] A.Piippo, et al. "Analysis of an adaptive observer for sensorless control of interior permanent magnet synchronous motors." IEEE Transactions on Industrial Electronics Vol.55 No.2 , pp. 570-576, 2008.
[13] M.A.Haimda,et al. "An adaptive interconnected observer for snesorless control of PM synchronous motors with online parameter identification." IEEE Transactions on Industrial Electronics Vol.60 No.2 , pp. 739-748, 2013.
[14] X.Zhang, et al. "Sliding-mode observer-based mechanical parameter estimation for permanent magnet synchronous motor." IEEE Transactions on Power Electronics Vol.31 No.8 , pp. 5732-5745, 2016.
[15] M.Khov, et al. "Detection of turn short-circuit faults in stator of PMSM by on-line parameter estimation." Power Electronics, Electrical Drives, Automation and Motion, 2008. SPEEDAM 2008. International Symposium on. IEEE, 2008.
[16] M.Khov, et al. "On-line parameter estimation of PMSM in open loop and closed loop." Industrial Technology, 2009. ICIT 2009. IEEE International Conference on. IEEE, 2009.
[17] S.J.Underwood., et al. "Online parameter estimation and adaptive control of permanent-magnet synchronous machines." IEEE Transactions on Industrial Electronics Vol.57 No.7 , pp. 2435-2443, 2010.
[18] Y.Inoue, et al. "Performance improvement of sensorless IPMSM drives in low-speed region using online parameter identification." Energy Conversion Congress and Exposition, 2009. ECCE 2009. IEEE. IEEE, 2009.
[19] I.Omrane, et al. "A simplified least squares identification of permanent magnet synchronous motor parameters at standstill." Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE. IEEE, 2013.
[20] W.Deng, et al. "Online multiparameter identification of surface-mounted PMSM considering inverter disturbance voltage." IEEE Transactions on Energy Conversion Vol.32 No.1 , pp. 202-212, 2017.
[21] R.Dhaouadi, et al. "Design and implementation of an extended Kalman filter for the state estimation of a permanent magnet synchronous motor." IEEE Transactions on Power Electronics Vol.6 No.3 , pp. 491-497, 1991.
[22] S.Bolognani, et al. "Sensorless full-digital PMSM drive with EKF estimation of speed and rotor position." IEEE transactions on Industrial Electronics Vol.46 No.1 , pp.184-191, 1999.
[23] M.Barut, et al. "Speed sensorless direct torque control of IMs with rotor resistance estimation." Energy Conversion and Management Vol.46 No.3 , pp. 335-349, 2005.
[24] D.Janiszewski. "Extended Kalman Filter based speed sensorless PMSM control with load reconstruction." IEEE Industrial Electronics, IECon 2006-32nd Annual Conference on. IEEE, 2006.
[25] X. Xiao, et al. "On-line estimation of permanent magnet flux linkage ripple for PMSM based on a Kalman filter." IEEE Industrial Electronics, IECON 2006-32nd Annual Conference on. IEEE, 2006.
[26] X.Xiao, et al. "Dynamic permanent magnet flux estimation of permanent magnet synchronous machines." IEEE Transactions on Applied Superconductivity Vol.20 No.3 , pp. 1085-1088, 2010.
[27] Z.Q.ZHU, et al. "Estimation of winding resistance and PM flux-linkage in brushless AC machines by reduced-order extended Kalman Filter." Networking, Sensing and Control, 2007 IEEE International Conference on. IEEE, 2007. pp. 740-745.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top