跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/06 00:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:DORCAS KORIR
研究生(外文):DORCAS KORIR
論文名稱:NOVEL DEEP LEARNING APPROACH FOR SCHEDULE ESTIMATE TO COMPLETION IN CONSTRUCTION PROJECT USING NN-LSTM
論文名稱(外文):NOVEL DEEP LEARNING APPROACH FOR SCHEDULE ESTIMATE TO COMPLETION IN CONSTRUCTION PROJECT USING NN-LSTM
指導教授:鄭明淵鄭明淵引用關係
指導教授(外文):Min-Yuan Cheng
口試委員:陳鴻銘吳育偉
口試委員(外文):Huang-Ming ChenYu-Wei Wu
口試日期:2017-10-03
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:96
中文關鍵詞:Schedule estimateinference modelindependent and dependent factorsneural network- long short-term memory (NN-LSTM)
外文關鍵詞:Schedule estimateinference modelindependent and dependent factorsneural network- long short-term memory (NN-LSTM)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
Estimation of construction project duration is extremely hard during various construction phases due to complexity, uncertainty and limited information available during a project course. Construction managers estimate construction duration according to their previous experience based on budget planning, a method that can be inaccurate and costly. This study developed a novel inference model that accurately estimate project duration factoring in the dependent and independent factors that significantly influence project duration and captures uncertainty involved in construction field. Duration influencing factors were selected based on the previous studies review, and later categorized into time dependent and independent factors. Subsequently, two artificial intelligence approaches were fused, namely neural networks (NN) and the long short-term memory (LSTM) to create a novel Neural Network - Long Short-Term Memory (NN-LSTM) model. The NN-LSTM was applied to estimate schedule to completion (ESTC) for historical cases where NN captured the impact of independent factors in project duration as LSTM captured the long temporal dependency for sequential inputs. After the analysis, 14 influencing factors and 11 historical cases were selected to establish the case database used for learning purposes. 10-cross validation was used to partition the training and testing dataset. The learning results indicated good performance with MAPE of 4% and mean absolute error of 2% proving the model more reliable than the currently prevailing formula. Moreover, upon comparison with other methods, NN-LSTM proved to be superior to SVM, LSSVM, BPNN, ESIM, ELSIM, SOS-LSSVM and the earned value method (EVM). The model qualifies to replace the subjective estimation based on experience alone. It provides project managers with reliable schedule estimates that facilitates proper planning and help in monitoring project’s performance in terms of time, prompting timely actions in case of foreseen delay and making of informed decisions.
Estimation of construction project duration is extremely hard during various construction phases due to complexity, uncertainty and limited information available during a project course. Construction managers estimate construction duration according to their previous experience based on budget planning, a method that can be inaccurate and costly. This study developed a novel inference model that accurately estimate project duration factoring in the dependent and independent factors that significantly influence project duration and captures uncertainty involved in construction field. Duration influencing factors were selected based on the previous studies review, and later categorized into time dependent and independent factors. Subsequently, two artificial intelligence approaches were fused, namely neural networks (NN) and the long short-term memory (LSTM) to create a novel Neural Network - Long Short-Term Memory (NN-LSTM) model. The NN-LSTM was applied to estimate schedule to completion (ESTC) for historical cases where NN captured the impact of independent factors in project duration as LSTM captured the long temporal dependency for sequential inputs. After the analysis, 14 influencing factors and 11 historical cases were selected to establish the case database used for learning purposes. 10-cross validation was used to partition the training and testing dataset. The learning results indicated good performance with MAPE of 4% and mean absolute error of 2% proving the model more reliable than the currently prevailing formula. Moreover, upon comparison with other methods, NN-LSTM proved to be superior to SVM, LSSVM, BPNN, ESIM, ELSIM, SOS-LSSVM and the earned value method (EVM). The model qualifies to replace the subjective estimation based on experience alone. It provides project managers with reliable schedule estimates that facilitates proper planning and help in monitoring project’s performance in terms of time, prompting timely actions in case of foreseen delay and making of informed decisions.
ABSTRACT i
ACKNOWLEDGEMENT iii
TABLE OF CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
LIST OF ABBREVIATIONS viii
LIST OF SYMBOLS x
CHAPTER 1: INTRODUCTION 1
1.1 Research motivation 1
1.2 Research objectives 4
1.3 Scope Definition and Basic Assumption 5
1.4 Research Methodology 6
1.4.1 Introduction 9
1.4.2 Literature Review 10
1.4.3 Model Construction 10
1.4.4 Model Validation 10
1.4.5 Model Application 11
1.4.6 Conclusion and recommendation 11
1.5 Study Outline 11
CHAPTER 2: LITERATURE REVIEW 13
2.1 Delay in construction projects 13
2.2 Methodology 16
2.2.1 Earned Value Management (EVM) 16
2.2.2 Support Vector Machine (SVM) 20
2.2.3 Least Squares Support Vector Machine (LSSVM) 22
2.2.4 Back Propagation Neural Networks (BPNN) 24
2.2.5 Evolutionary Support Vector Machine Inference Model (ESIM) 25
2.2.6 Evolutionary Least Support Vector Machine (ELSIM) 26
2.2.7 The Symbiotic Organisms Search-Least Squares Support Vector Machine (SOS-LSSVM) 27
2.2.8 Neural Networks 28
2.2.9 Long Short-Term Memory 29
CHAPTER 3: ESTIMATE SCHEDULE TO COMPLETION INFERENCE MODEL- NN-LSTM 33
3.1 Model architecture 33
3.2 Model Adaptation Process 35
CHAPTER 4: PREDICTION OF ESTIMATE SCHEDULE TO COMPLETION 43
4.1 Selection of the duration factors 43
4.2 Data collection 47
4.3 Data processing 50
4.4 Cross Validation 52
4.5 Model training 53
4.6 Model testing 54
4.7 Result comparison 56
4.7.1 Earned Value Management 56
4.7.2 Other AI methods 58
CHAPTER 5: MODEL APPLICATION 62
5.1 Case study 62
5.2 Data preparation 64
5.3 ESTC prediction 66
5.4 Calculation of ESAC 68
5.5 Decision-making 70
CHAPTER 6: CONCLUSION AND RECOMMENDATION 72
6.1 Research objectives review summary 72
6.2 Conclusion 73
6.3 Recommendations 75
REFERENCES 76
Alex Graves, Abdel-rahman Mohamed, & Hinton, G. (2013). SPEECH RECOGNITION WITH DEEP RECURRENT NEURAL NETWORKS. in Proc. ICASSP, 6885– 6889.
Anbari, F. (2003). Earned value project management method and extensions. Project Management Journal, 34(4), 12-23.
Assaf, S. A., & Al-Hejji, S. (2006). Causes of delay in large construction projects. International Journal of Project Management, 24(4), 349-357. doi:http://dx.doi.org/10.1016/j.ijproman.2005.11.010
Aziz, R. F., & Abdel-Hakam, A. A. (2016). Exploring delay causes of road construction projects in Egypt. Alexandria Engineering Journal, 55(2), 1515-1539. doi:https://doi.org/10.1016/j.aej.2016.03.006
Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning Long-Term Dependencies with Gradient Descent is Difficult. IEEE Transactions on neural networks, 5(2).
Boussabaine, A. H., & Kaka, A. P. (1998). A neural networks approach for cost flow forecasting. Construction Management and Economics, 16(4), 471-479. doi:10.1080/014461998372240
Chan, D. W. M., & Kumaraswamy, M. M. (1996). An evaluation of construction time performance in the building industry. Building and Environment, 31(6), 569-578. doi:http://dx.doi.org/10.1016/0360-1323(96)00031-5
Chan, W.-m. (1998). “Modelling construction duration for public housing projects in Hong Kong”. Doctoral dissertation

Chen, G. (2016). A Gentle Tutorial of Recurrent Neural Network with Error Backpropagation.
Cheng, M.-Y., & Cao, M.-T. (2014). Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines. Applied Soft Computing, 22, 178-188. doi:http://dx.doi.org/10.1016/j.asoc.2014.05.015
Cheng, M.-Y., & Hoang, N.-D. (2014). Risk Score Inference for Bridge Maintenance Project Using Evolutionary Fuzzy Least Squares Support Vector Machine. Journal of Computing in Civil Engineering, 28(3), 04014003. doi:10.1061/(asce)cp.1943-5487.0000275
Cheng, M.-Y., Hoang, N.-D., & Wu, Y.-W. (2015). Cash flow prediction for construction project using a novel adaptive time-dependent least squares support vector machine inference model. Journal of Civil Engineering and Management, 21(6), 679-688. doi:10.3846/13923730.2014.893906
Cheng, M.-Y., K., W. D., Prayogo, D., & Roy, A. F. V. (2015). "Predicting productivity loss caused by change orders using the evolutionary fuzzy support vector machine inference model". Journal of Civil Engineering and Management, 21, 881-892.
Cheng, M.-Y., Peng, H.-S., Wu, Y.-W., & Chen, T.-L. (2010). Estimate at Completion for construction projects using Evolutionary Support Vector Machine Inference Model. Automation in Construction, 19(5), 619-629. doi:https://doi.org/10.1016/j.autcon.2010.02.008
Cheng, M.-Y., & Prayogo, D. (2014). Symbiotic Organisms Search: A new metaheuristic optimization algorithm. Computers & Structures, 139, 98-112. doi:http://dx.doi.org/10.1016/j.compstruc.2014.03.007
Cheng, M.-Y., Tsai, H.-C., & Liu, C.-L. (2009). Artificial intelligence approaches to achieve strategic control over project cash flows. Automation in Construction, 18(4), 386-393. doi:http://dx.doi.org/10.1016/j.autcon.2008.10.005
Cheng, M.-Y., & Wu, Y.-W. (2009). Evolutionary support vector machine inference system for construction management. Automation in Construction, 18(5), 597-604. doi:http://doi.org/10.1016/j.autcon.2008.12.002
Chou, J.-S., & Thedja, J. P. P. (2016). Metaheuristic optimization within machine learning-based classification system for early warnings related to geotechnical problems. Automation in Construction, 68, 65-80. doi:http://dx.doi.org/10.1016/j.autcon.2016.03.015
Cortes, C., & Vapnik, V. N. (1995). Support Vector Networks (Vol. 20).
Daniel Castro-Lacouture, Gürsel A. Süer, Julian Gonzalez-Joaqui, & Yates, J. K. (2009). Construction Project Scheduling with Time, Cost,
and Material Restrictions Using Fuzzy Mathematical
Models and Critical Path Method. Journal of Construction Engineering and Management, 135(10). doi:10.1061//ASCE/0733-9364/2009/135:10/1096
Doloi, H., Sawhney, A., Iyer, K. C., & Rentala, S. (2012). Analysing factors affecting delays in Indian construction projects. International Journal of Project Management, 30(4), 479-489. doi:http://dx.doi.org/10.1016/j.ijproman.2011.10.004
Henderson, K. (2003). Earned Schedule: A Breakthrough Extension to Earned Value Management. The Measurable News, 13-7(summer).
Huawang, S., & Wanqing, L. (2009). “The Grey Relational Analysis on Building Construction Duration Cases”. International Conference on Future BioMedical Information Engineering, 358-361.
Isaac Mensah, Gabriel Nani, & Adjei-Kumi, T. (2016). Development of a Model for Estimating the Duration of Bridge Construction Projects in Ghana. International Journal of Construction Engineering and Management, 5(2), 55-66. doi:10.5923/j.ijcem.20160502.03
Jacob, D. S., & Kane, M. (2004). Forecasting schedule completion using earned value metrics revisited (Vol. 1).
Jha, K., & Chockalingam, C. T. (2011). Prediction of schedule performance of Indian construction projects using an artificial neural network (Vol. 29).
Jian, K. Q. (2004). "Using fuzzy neural network and fast messy genetic algorithms to forecast project duration". Master’s thesis. National Cheng Kung University.
Jyh-Bin Yang, & Wei, P.-R. (2010). Causes of Delay in the Planning and Design Phases for Construction Projects Journal of Architectural Engineering, 6(2). doi:10.1061//ASCE/1076-0431/2010/16:2/80
Kaming, P. F., Olomolaiye, P. O., Holt, G. D., & Harris, F. C. (2010). Factors influencing construction time and cost overruns on high-rise projects in Indonesia. Construction Management and Economics, 15(1), 83-94. doi:10.1080/014461997373132
Kim, E., Wells, W. G., & Duffey, M. R. (2003). A model for effective implementation of Earned Value Management methodology. International Journal of Project Management, 21(5), 375-382. doi:10.1016/s0263-7863(02)00049-2
Längkvist, M., Karlsson, L., & Loutfi, A. (2014). A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognition Letters, 42(Supplement C), 11-24. doi:https://doi.org/10.1016/j.patrec.2014.01.008
Lin, M.-C., Tserng, H. P., Ho, S.-P., & Young, D.-L. (2011). Developing a Construction-Duration Model Based on a Historical Dataset for Building Project. Journal of Civil Engineering and Management, 17(4), 529-539. doi:10.3846/13923730.2011.625641
Lipke, W., Zwikael, O., Henderson, K., & Anbari, F. (2009). Prediction of project outcome: The application of statistical methods to earned value management and earned schedule performance indexes. International Journal of Project Management, 27(4), 400-407. doi:http://dx.doi.org/10.1016/j.ijproman.2008.02.009
López-Martín, C., & Abran, A. (2015). Neural networks for predicting the duration of new software projects. Journal of Systems and Software, 101(Supplement C), 127-135. doi:https://doi.org/10.1016/j.jss.2014.12.002
Ma, X., Tao, Z., Wang, Y., Yu, H., & Wang, Y. (2015). Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transportation Research Part C: Emerging Technologies, 54, 187-197. doi:http://dx.doi.org/10.1016/j.trc.2015.03.014
Maravas, A., & Pantouvakis, J.-P. (2012). Project cash flow analysis in the presence of uncertainty in activity duration and cost. International Journal of Project Management, 30(3), 374-384. doi:http://dx.doi.org/10.1016/j.ijproman.2011.08.005
Marcus Liwicki, Alex Graves, Horst Bunke, & Schmidhuber, J. u. (2007). “A novel approach to on-line handwriting recognition based on bidirectional long short-term memory networks". in Proc. ICDAR, 367–371. .
Marzouk, M. M., & El-Rasas, T. I. (2014). Analyzing delay causes in Egyptian construction projects. Journal of Advanced Research, 5(1), 49-55. doi:http://dx.doi.org/10.1016/j.jare.2012.11.005
Nkado, R. N. (1995). ”Construction time-influencing factors: the contractor’s perspective”. Construction Management and Economics, 13(1), 81-89.
Petroutsatou, K., Georgopoulos, E., Lambropoulos, S., & Pantouvakis, J. P. (2012). Early Cost Estimating of Road Tunnel Construction Using Neural Networks. Journal of Construction Engineering and Management, 138(6), 679-687. doi:10.1061/(asce)co.1943-7862.0000479
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning Representations by Back-Propagating Errors. Nature, 323, 533-536.
Sapankevych, N., & Sankar, R. (2009). Time Series Prediction Using Support Vector Machines: A Survey. IEEE Computational Intelligence Magazine, 4(2), 24-38. doi:10.1109/mci.2009.932254
Sepp Hochreiter, & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.
SMOLA, A. J., & SCHOLKOPF, B. (2004). A tutorial on support vector regression. Statistics and Computing, 199–222.
Sou-Sen, L., & Hsien-Chuang, L. (2004). Neural-network-based regression model of ground surface settlement induced by deep excavation. Automation in Construction, 13(3), 279-289. doi:http://dx.doi.org/10.1016/S0926-5805(03)00018-9
Suykens J.A.K., & J., V. (1999). "Least Squares Support Vector Machine Classifiers". Neural Processing Letters, 9, 293-300.
Sweis, G., Sweis, R., Abu Hammad, A., & Shboul, A. (2008). Delays in construction projects: The case of Jordan. International Journal of Project Management, 26(6), 665-674. doi:http://dx.doi.org/10.1016/j.ijproman.2007.09.009
Tinoco, J., Gomes Correia, A., & Cortez, P. (2014). Support vector machines applied to uniaxial compressive strength prediction of jet grouting columns. Computers and Geotechnics, 55, 132-140. doi:10.1016/j.compgeo.2013.08.010
Tu, J. V. (1996). Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of Clinical Epidemiology, 49(11), 1225-1231. doi:https://doi.org/10.1016/S0895-4356(96)00002-9
Vandevoorde, S., & Vanhoucke, M. (2006). A comparison of different project duration forecasting methods using earned value metrics. International Journal of Project Management, 24(4), 289-302. doi:10.1016/j.ijproman.2005.10.004
Vapnik, V., Golowich, S. E., & Smola, A. J. (1997). Support vector method for function approximation, regression estimation and signal processing. Paper presented at the Advances in neural information processing systems.
Venkatesh, K., Ravi, V., Prinzie, A., & Poel, D. V. d. (2014). Cash demand forecasting in ATMs by clustering and neural networks. European Journal of Operational Research, 232(2), 383-392. doi:http://dx.doi.org/10.1016/j.ejor.2013.07.027
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top