|
Alex Graves, Abdel-rahman Mohamed, & Hinton, G. (2013). SPEECH RECOGNITION WITH DEEP RECURRENT NEURAL NETWORKS. in Proc. ICASSP, 6885– 6889. Anbari, F. (2003). Earned value project management method and extensions. Project Management Journal, 34(4), 12-23. Assaf, S. A., & Al-Hejji, S. (2006). Causes of delay in large construction projects. International Journal of Project Management, 24(4), 349-357. doi:http://dx.doi.org/10.1016/j.ijproman.2005.11.010 Aziz, R. F., & Abdel-Hakam, A. A. (2016). Exploring delay causes of road construction projects in Egypt. Alexandria Engineering Journal, 55(2), 1515-1539. doi:https://doi.org/10.1016/j.aej.2016.03.006 Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning Long-Term Dependencies with Gradient Descent is Difficult. IEEE Transactions on neural networks, 5(2). Boussabaine, A. H., & Kaka, A. P. (1998). A neural networks approach for cost flow forecasting. Construction Management and Economics, 16(4), 471-479. doi:10.1080/014461998372240 Chan, D. W. M., & Kumaraswamy, M. M. (1996). An evaluation of construction time performance in the building industry. Building and Environment, 31(6), 569-578. doi:http://dx.doi.org/10.1016/0360-1323(96)00031-5 Chan, W.-m. (1998). “Modelling construction duration for public housing projects in Hong Kong”. Doctoral dissertation
Chen, G. (2016). A Gentle Tutorial of Recurrent Neural Network with Error Backpropagation. Cheng, M.-Y., & Cao, M.-T. (2014). Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines. Applied Soft Computing, 22, 178-188. doi:http://dx.doi.org/10.1016/j.asoc.2014.05.015 Cheng, M.-Y., & Hoang, N.-D. (2014). Risk Score Inference for Bridge Maintenance Project Using Evolutionary Fuzzy Least Squares Support Vector Machine. Journal of Computing in Civil Engineering, 28(3), 04014003. doi:10.1061/(asce)cp.1943-5487.0000275 Cheng, M.-Y., Hoang, N.-D., & Wu, Y.-W. (2015). Cash flow prediction for construction project using a novel adaptive time-dependent least squares support vector machine inference model. Journal of Civil Engineering and Management, 21(6), 679-688. doi:10.3846/13923730.2014.893906 Cheng, M.-Y., K., W. D., Prayogo, D., & Roy, A. F. V. (2015). "Predicting productivity loss caused by change orders using the evolutionary fuzzy support vector machine inference model". Journal of Civil Engineering and Management, 21, 881-892. Cheng, M.-Y., Peng, H.-S., Wu, Y.-W., & Chen, T.-L. (2010). Estimate at Completion for construction projects using Evolutionary Support Vector Machine Inference Model. Automation in Construction, 19(5), 619-629. doi:https://doi.org/10.1016/j.autcon.2010.02.008 Cheng, M.-Y., & Prayogo, D. (2014). Symbiotic Organisms Search: A new metaheuristic optimization algorithm. Computers & Structures, 139, 98-112. doi:http://dx.doi.org/10.1016/j.compstruc.2014.03.007 Cheng, M.-Y., Tsai, H.-C., & Liu, C.-L. (2009). Artificial intelligence approaches to achieve strategic control over project cash flows. Automation in Construction, 18(4), 386-393. doi:http://dx.doi.org/10.1016/j.autcon.2008.10.005 Cheng, M.-Y., & Wu, Y.-W. (2009). Evolutionary support vector machine inference system for construction management. Automation in Construction, 18(5), 597-604. doi:http://doi.org/10.1016/j.autcon.2008.12.002 Chou, J.-S., & Thedja, J. P. P. (2016). Metaheuristic optimization within machine learning-based classification system for early warnings related to geotechnical problems. Automation in Construction, 68, 65-80. doi:http://dx.doi.org/10.1016/j.autcon.2016.03.015 Cortes, C., & Vapnik, V. N. (1995). Support Vector Networks (Vol. 20). Daniel Castro-Lacouture, Gürsel A. Süer, Julian Gonzalez-Joaqui, & Yates, J. K. (2009). Construction Project Scheduling with Time, Cost, and Material Restrictions Using Fuzzy Mathematical Models and Critical Path Method. Journal of Construction Engineering and Management, 135(10). doi:10.1061//ASCE/0733-9364/2009/135:10/1096 Doloi, H., Sawhney, A., Iyer, K. C., & Rentala, S. (2012). Analysing factors affecting delays in Indian construction projects. International Journal of Project Management, 30(4), 479-489. doi:http://dx.doi.org/10.1016/j.ijproman.2011.10.004 Henderson, K. (2003). Earned Schedule: A Breakthrough Extension to Earned Value Management. The Measurable News, 13-7(summer). Huawang, S., & Wanqing, L. (2009). “The Grey Relational Analysis on Building Construction Duration Cases”. International Conference on Future BioMedical Information Engineering, 358-361. Isaac Mensah, Gabriel Nani, & Adjei-Kumi, T. (2016). Development of a Model for Estimating the Duration of Bridge Construction Projects in Ghana. International Journal of Construction Engineering and Management, 5(2), 55-66. doi:10.5923/j.ijcem.20160502.03 Jacob, D. S., & Kane, M. (2004). Forecasting schedule completion using earned value metrics revisited (Vol. 1). Jha, K., & Chockalingam, C. T. (2011). Prediction of schedule performance of Indian construction projects using an artificial neural network (Vol. 29). Jian, K. Q. (2004). "Using fuzzy neural network and fast messy genetic algorithms to forecast project duration". Master’s thesis. National Cheng Kung University. Jyh-Bin Yang, & Wei, P.-R. (2010). Causes of Delay in the Planning and Design Phases for Construction Projects Journal of Architectural Engineering, 6(2). doi:10.1061//ASCE/1076-0431/2010/16:2/80 Kaming, P. F., Olomolaiye, P. O., Holt, G. D., & Harris, F. C. (2010). Factors influencing construction time and cost overruns on high-rise projects in Indonesia. Construction Management and Economics, 15(1), 83-94. doi:10.1080/014461997373132 Kim, E., Wells, W. G., & Duffey, M. R. (2003). A model for effective implementation of Earned Value Management methodology. International Journal of Project Management, 21(5), 375-382. doi:10.1016/s0263-7863(02)00049-2 Längkvist, M., Karlsson, L., & Loutfi, A. (2014). A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognition Letters, 42(Supplement C), 11-24. doi:https://doi.org/10.1016/j.patrec.2014.01.008 Lin, M.-C., Tserng, H. P., Ho, S.-P., & Young, D.-L. (2011). Developing a Construction-Duration Model Based on a Historical Dataset for Building Project. Journal of Civil Engineering and Management, 17(4), 529-539. doi:10.3846/13923730.2011.625641 Lipke, W., Zwikael, O., Henderson, K., & Anbari, F. (2009). Prediction of project outcome: The application of statistical methods to earned value management and earned schedule performance indexes. International Journal of Project Management, 27(4), 400-407. doi:http://dx.doi.org/10.1016/j.ijproman.2008.02.009 López-Martín, C., & Abran, A. (2015). Neural networks for predicting the duration of new software projects. Journal of Systems and Software, 101(Supplement C), 127-135. doi:https://doi.org/10.1016/j.jss.2014.12.002 Ma, X., Tao, Z., Wang, Y., Yu, H., & Wang, Y. (2015). Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transportation Research Part C: Emerging Technologies, 54, 187-197. doi:http://dx.doi.org/10.1016/j.trc.2015.03.014 Maravas, A., & Pantouvakis, J.-P. (2012). Project cash flow analysis in the presence of uncertainty in activity duration and cost. International Journal of Project Management, 30(3), 374-384. doi:http://dx.doi.org/10.1016/j.ijproman.2011.08.005 Marcus Liwicki, Alex Graves, Horst Bunke, & Schmidhuber, J. u. (2007). “A novel approach to on-line handwriting recognition based on bidirectional long short-term memory networks". in Proc. ICDAR, 367–371. . Marzouk, M. M., & El-Rasas, T. I. (2014). Analyzing delay causes in Egyptian construction projects. Journal of Advanced Research, 5(1), 49-55. doi:http://dx.doi.org/10.1016/j.jare.2012.11.005 Nkado, R. N. (1995). ”Construction time-influencing factors: the contractor’s perspective”. Construction Management and Economics, 13(1), 81-89. Petroutsatou, K., Georgopoulos, E., Lambropoulos, S., & Pantouvakis, J. P. (2012). Early Cost Estimating of Road Tunnel Construction Using Neural Networks. Journal of Construction Engineering and Management, 138(6), 679-687. doi:10.1061/(asce)co.1943-7862.0000479 Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning Representations by Back-Propagating Errors. Nature, 323, 533-536. Sapankevych, N., & Sankar, R. (2009). Time Series Prediction Using Support Vector Machines: A Survey. IEEE Computational Intelligence Magazine, 4(2), 24-38. doi:10.1109/mci.2009.932254 Sepp Hochreiter, & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. SMOLA, A. J., & SCHOLKOPF, B. (2004). A tutorial on support vector regression. Statistics and Computing, 199–222. Sou-Sen, L., & Hsien-Chuang, L. (2004). Neural-network-based regression model of ground surface settlement induced by deep excavation. Automation in Construction, 13(3), 279-289. doi:http://dx.doi.org/10.1016/S0926-5805(03)00018-9 Suykens J.A.K., & J., V. (1999). "Least Squares Support Vector Machine Classifiers". Neural Processing Letters, 9, 293-300. Sweis, G., Sweis, R., Abu Hammad, A., & Shboul, A. (2008). Delays in construction projects: The case of Jordan. International Journal of Project Management, 26(6), 665-674. doi:http://dx.doi.org/10.1016/j.ijproman.2007.09.009 Tinoco, J., Gomes Correia, A., & Cortez, P. (2014). Support vector machines applied to uniaxial compressive strength prediction of jet grouting columns. Computers and Geotechnics, 55, 132-140. doi:10.1016/j.compgeo.2013.08.010 Tu, J. V. (1996). Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of Clinical Epidemiology, 49(11), 1225-1231. doi:https://doi.org/10.1016/S0895-4356(96)00002-9 Vandevoorde, S., & Vanhoucke, M. (2006). A comparison of different project duration forecasting methods using earned value metrics. International Journal of Project Management, 24(4), 289-302. doi:10.1016/j.ijproman.2005.10.004 Vapnik, V., Golowich, S. E., & Smola, A. J. (1997). Support vector method for function approximation, regression estimation and signal processing. Paper presented at the Advances in neural information processing systems. Venkatesh, K., Ravi, V., Prinzie, A., & Poel, D. V. d. (2014). Cash demand forecasting in ATMs by clustering and neural networks. European Journal of Operational Research, 232(2), 383-392. doi:http://dx.doi.org/10.1016/j.ejor.2013.07.027
|