跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/14 10:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:LEONARDUS SETIA BUDI WIBOWO
研究生(外文):LEONARDUS SETIA BUDI WIBOWO
論文名稱:Strength and Deformation Capacity of High-Shear Demand RC Squat Wall using High-Strength Materials
論文名稱(外文):Strength and Deformation Capacity of High-Shear Demand RC Squat Wall using High-Strength Materials
指導教授:鄭敏元鄭敏元引用關係
指導教授(外文):Min-Yuan Cheng
口試委員:黃世建歐昱辰邱建國林克強廖文正
口試委員(外文):SHYH-JIANN HWANGYU-CHEN OUCHIEN-KUO CHIUKER-CHUN LINWEN-CHENG LIAO
口試日期:2017-12-11
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:英文
論文頁數:202
中文關鍵詞:strengthdeformationsquat wallhigh-strength
外文關鍵詞:strengthdeformationsquat wallhigh-strength
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
An experimental study is carried out to evaluates the cyclic behaviors of RC squat wall specimens using conventional and high-strength materials. A total of 11 specimens were tested under lateral displacement reversals. Test parameters include specimen aspect ratio (hw⁄lw), existence of horizontally distributed web reinforcement, concrete strength, steel grade, shear demand and the wall cross section. Test results indicate specimens using high-strength steels exhibited comparable strength and deformation capacity as specimens using conventional Grade 60 steels with equivalent steel area force, i.e. total steel area times the steel yield stress. Specimen drift capacity decreases as the normalized shear demand increases. The use of high-strength concrete reduces normalized shear stress demand and results in larger specimen deformation capacity. Based on the available test results, specimen deformation capacity increases due to the use of barbell-shape special boundary element. A linear regression analysis suggests a maximum shear stress demand less than 7.0√(fc'(psi)) or 0.58√(fc'(MPa)) for RC squat walls to achieve a minimum drift capacity of 1.50%.
An experimental study is carried out to evaluates the cyclic behaviors of RC squat wall specimens using conventional and high-strength materials. A total of 11 specimens were tested under lateral displacement reversals. Test parameters include specimen aspect ratio (hw⁄lw), existence of horizontally distributed web reinforcement, concrete strength, steel grade, shear demand and the wall cross section. Test results indicate specimens using high-strength steels exhibited comparable strength and deformation capacity as specimens using conventional Grade 60 steels with equivalent steel area force, i.e. total steel area times the steel yield stress. Specimen drift capacity decreases as the normalized shear demand increases. The use of high-strength concrete reduces normalized shear stress demand and results in larger specimen deformation capacity. Based on the available test results, specimen deformation capacity increases due to the use of barbell-shape special boundary element. A linear regression analysis suggests a maximum shear stress demand less than 7.0√(fc'(psi)) or 0.58√(fc'(MPa)) for RC squat walls to achieve a minimum drift capacity of 1.50%.
TABLE OF CONTENT

ABSTRACT i
ACKNOWLEDGEMENT ii
TABLE OF CONTENTS iii
LIST OF TABLES vi
LIST OF FIGURES vii
NOTATION xii

CHAPTER I – INTRODUCTION 1
1.1. REINFORCED CONCRETE SHEAR WALL 1
1.2. RESEARCH MOTIVATION 4
1.3. RESEARCH OBJECTIVE 5
1.4. REPORT OUTLINE 5

CHAPTER 2 – LITERATURE REVIEW 7
2.1. INTRODUCTION 7
2.2. EXPERIMENTAL RESEARCH ON RC STRUCTURAL COMPONENTS 7
2.2.1. High-Strength Concrete 7
2.2.2. High-Strength Steel 12
2.3. EXPERIMENTAL STUDIES OF RC SQUAT WALL 17
2.3.1. Maier (Maier, 1992) 17
2.3.2. Salonikios, Kappos, Tegos, and Penelis (Salonikios et al., 1999; 2000) 19
2.3.3. Greifenhagen and Lestuzzi (Greifenhagen and Lestuzzi, 2005) 20
2.3.4. Taleb, Kono, Tani and Sakashita (Taleb et al., 2014) 21
2.3.5. Baek and Park (Baek and Park, 2015) 22
2.3.6. Park, Baek, Lee, and Shin (Park et al., 2015) 24
2.3.7. Cheng, Hung, Lequesne, and Lepage (Cheng et al., 2016) 25
2.4. EVALUATION OF PREDICTIVE EQUATIONS FOR PEAK SHEAR STRENGTH 26
2.4.1. Wood (1990) 26
2.4.2. Simplified Softened Strut-and-Tie Model (Hwang and Lee, 2002) 27
2.4.3. Gulec and Whittaker (2011) 34
2.5. DESIGN PROVISIONS OF SQUAT WALL PER ACI 318-14 35
2.5.1. Material Properties 35
2.5.2. Shear Strength 35
2.5.3. Special Boundary Element 35

CHAPTER 3 – EXPERIMENTAL PROGRAM 37
3.1. INTRODUCTION 37
3.2. SPECIMEN DESIGN 37
3.3. SPECIMEN CONSTRUCTION 50
3.4. EXPERIMENTAL SETUP AND INSTRUMENTATION 53
3.4.1. Experimental Setup 53
3.4.2. Data Recording and Instrumentation 56

CHAPTER 4 – EXPERIMENTAL RESULTS AND DISCUSSION 69
4.1. INTRODUCTION 69
4.2. MATERIAL PROPERTIES 69
4.2.1. Concrete 69
4.2.1.1. Slump 69
4.2.1.2. Concrete Cylinder Compressive Strength 70
4.2.2. Steel Reinforcement 75
4.3. GENERAL SPECIMEN BEHAVIOR, CRACK DEVELOPMENT AND SHEAR STRESS-DRIFT RESPONSE 82
4.3.1. Specimen CCC-D-0.5 82
4.3.2. Specimen CHC-D-0.5 85
4.3.3. Specimen HHC-D-0.5 87
4.3.4. Specimen HHH-D-0.5 90
4.3.5. Specimen HHH-N-0.5 92
4.3.6. Specimen CCC-V-1.0 94
4.3.7. Specimen HHH-N-1.0 97
4.3.8. Specimen HHH-B-1.0 100
4.3.9. Specimen CCC-N-1.5 103
4.3.10. Specimen HCC-N-1.5 106
4.3.11. Specimen HHH-N-1.5 110
4.4. STRAIN GAUGE READINGS 114
4.4.1. Specimen CCC-D-0.5 115
4.4.2. Specimen CHC-D-0.5 115
4.4.3. Specimen HHC-D-0.5 116
4.4.4. Specimen HHH-D-0.5 116
4.4.5. Specimen HHH-N-0.5 117
4.4.6. Specimen CCC-V-1.0 117
4.4.7. Specimen HHH-N-1.0 118
4.4.8. Specimen HHH-B-1.0 119
4.4.9. Specimen CCC-N-1.5 120
4.4.10. Specimen HCC-N-1.5 121
4.4.11. Specimen HHH-N-1.5 122

CHAPTER 5 - DISCUSSION 125
5.1. INTRODUCTION 125
5.2. ANALYSIS OF EXPERIMENTAL RESULTS 126
5.2.1. Strength 126
5.2.2. Deformation 131
5.2.3. Curvature 137

CHAPTER 6 - CONCLUSION 141

REFERENCES 143

APPENDIX A 151

APPENDIX B 199

LIST OF TABLES

CHAPTER 1

CHAPTER 2
Table 2.1─ Required Material Properties of Reinforcement 13
Table 2.2─ Requirements of Transverse Reinforcement in the Special Boundary Element 36

CHAPTER 3
Table 3.1 ─ Summary of Designed l"dh,provide " l"dh,required " 40
Table 3.2 ─ Design Parameters for test specimen 41

CHAPTER 4
Table 4.1 – Concrete Slump Measurement 70
Table 4.2(a) – Concrete Compressive Strength Summary for Specimen with
Aspect Ratio 0.5 72
Table 4.2(b) – Concrete Compressive Strength Summary for Specimen with
Aspect Ratio 1.0 73
Table 4.2(c) – Concrete Compressive Strength Summary for Specimen with
Aspect Ratio 1.5 74
Table 4.3 – Summary of Steel Reinforcement Properties 81
Table 4.4(a)-Summary of test results for Specimen with Aspect Ratio 0.5 113
Table 4.4(b)-Summary of test results for Specimen with Aspect Ratio 1.0 114
Table 4.4(c)-Summary of test results for Specimen with Aspect Ratio 1.5 114

CHAPTER 5
Table 5.1 ─ Shear Strength Evaluation from Present Study 130
Table 5.2 ─ Shear Strength Evaluation from Cheng et al. 2016 130

CHAPTER 6 
LIST OF FIGURES

CHAPTER 1
Fig. 1.1 - Plaza del Mar, Vina del Mar 2
Fig. 1.2 - RC shear wall during construction 4

CHAPTER 2
Fig. 2.1– Stress-strain relationship of normal weight concrete under uniaxial compressive loading (Wischers, 1979) 9
Fig. 2.2(a) – Deflection vs Load (Rashid and Mansur, 2005) 10
Fig. 2.2(b) – Beam ductility as influenced by concrete strength (Rashid and Mansur, 2005) 10
Fig. 2.3 – Direct Tensile Test Results of Steel Coupon Samples 13
Fig. 2.4 – Verification of Wood Model (Wood, 1990) 27
Fig. 2.5 – Wall Shear Resisting Mechanisms (Hwang et al, 2001) 28
Fig. 2.6 – Diagonal Mechanism (Hwang and Lee, 2002) 29
Fig. 2.7 – Diagonal and Horizontal Mechanism (Hwang and Lee, 2002) 29
Fig. 2.8 – Complete Mechanism (Hwang and Lee, 2002) 30
Fig. 2.9 – Verification of SSST Model (Hwang and Lee, 2002) 33

CHAPTER 3
Fig. 3.1(a) – Geometry and Reinforcement for Specimen CCC-D-0.5 42
Fig. 3.1(b) – Geometry and Reinforcement for Specimen CHC-D-0.5 42
Fig. 3.1(c) – Geometry and Reinforcement for Specimen HHC-D-0.5 43
Fig. 3.1(d) – Geometry and Reinforcement for Specimen HHH-D-0.5 43
Fig. 3.1(e) – Geometry and Reinforcement for Specimen HHH-N-0.5 44
Fig. 3.2(a) – Geometry and Reinforcement for Specimen CCC-V-1.0 44
Fig. 3.2(b) – Geometry and Reinforcement for Specimen HHH-N-1.0 45
Fig. 3.2(c) – Geometry and Reinforcement for Specimen HHH-B-1.0 45
Fig. 3.3(a) – Geometry and Reinforcement for Specimen CCC-N-1.5 46
Fig. 3.3(b) – Geometry and Reinforcement for Specimen HCC-N-1.5 46
Fig. 3.3(c) – Geometry and Reinforcement for Specimen HHH-N-1.5 47
Fig. 3.4(a) – Top Concrete Block Type A 48
Fig. 3.4(b) – Top Concrete Block Type B 48
Fig. 3.4(c) – Top Concrete Block Type C 48
Fig. 3.5(a) –Concrete Base Block Type A 49
Fig. 3.5(b) –Concrete Base Block Type B 49
Fig. 3.6 – Concrete Cylinder Sample Preparation 51
Fig. 3.7 – Specimen Constructions with Aspect Ratio 0.5 51
Fig. 3.8 – Specimen Constructions with Aspect Ratio 1.0 52
Fig. 3.9 – Specimen Constructions with Aspect Ratio 1.5 52
Fig. 3.10 – Experimental Setup 54
Fig. 3.11 – Photos for Experimental Setup 55
Fig. 3.12 – Loading History 56
Fig. 3.13 – Typical Optical Tracking System Setup 57
Fig. 3.14 – Location of instrumentation for measurement of displacements 58
Fig. 3.15 – Marker Position in Specimen 60
Fig. 3.16 – Actual Top LVDT Setup 61
Fig. 3.17 – Actual Bottom LVDT Setup 61
Fig. 3.18(a) – Strain Gauge Layout for Specimens CCC-D-0.5 and CHC-D-0.5 62
Fig. 3.18(b) – Strain Gauge Layout for Specimens HHC-D-0.5 and HHH-D-0.5 62
Fig. 3.18(c) – Strain Gauge Layout for Specimens HHH-N-0.5 63
Fig. 3.19(a) – Strain Gauge Layout for Specimens CCC-V-0.5 63
Fig. 3.19(b) – Strain Gauge Layout for Specimens HHH-N-1.0 and HHH-B-1.0 64
Fig. 3.20(a) – Strain Gauge Layout for Specimens CCC-N-1.5 65
Fig. 3.20(b) – Strain Gauge Layout for Specimens HCC-N-1.5 and HHH-N-1.5 66
Fig. 3.21 – Gridline Pattern 67


CHAPTER 4

Fig. 4.1 – Slump Test and Slump Flow Test 70
Fig. 4.2 – Concrete Compressive Strength Testing 71
Fig. 4.3 – Direct Tensile Testing 75
Fig. 4.4 – Steel Reinforcement Stress-Strain Relationship Specimen with
Aspect Ratio 0.5 77
Fig. 4.5 – Steel Reinforcement Stress-Strain Relationship Specimen with
Aspect Ratio 1.0 78
Fig. 4.6 – Steel Reinforcement Stress-Strain Relationship Specimen with
Aspect Ratio 1.5 79
Fig. 4.7 – Yield Point Evaluation using 0.2% Offset Method 80
Fig. 4.8-Damages States Photos of Specimen CCC-D-0.5 84
Fig. 4.9-Crack Width of Specimen CCC-D-0.5 84
Fig. 4.10-Hysteresis Response of Specimen CCC-D-0.5 85
Fig. 4.11-Damages States Photos of Specimen CHC-D-0.5 86
Fig. 4.12-Crack Width of Specimen CHC-D-0.5 87
Fig. 4.13-Hysteresis Response of Specimen CHC-D-0.5 87
Fig. 4.14-Damages States Photos of Specimen HHC-D-0.5 89
Fig. 4.15-Crack Width of Specimen HHC-D-0.5 89
Fig. 4.16-Hysteresis Response of Specimen HHC-D-0.5 90
Fig. 4.17-Damages States Photos of Specimen HHH-D-0.5 91
Fig. 4.18-Crack Width of Specimen HHH-D-0.5 92
Fig. 4.19-Hysteresis Response of Specimen HHH-D-0.5 92
Fig. 4.20-Damages States Photos of Specimen HHH-N-0.5 93
Fig. 4.21-Crack Width of Specimen HHH-N-0.5 94
Fig. 4.22-Hysteresis Response of Specimen HHH-N-0.5 94
Fig. 4.23-Damages States Photos of Specimen CCC-V-1.0 96
Fig. 4.24-Crack Width of Specimen CCC-V-1.0 97
Fig. 4.25-Hysteresis Response of Specimen CCC-V-1.0 97
Fig. 4.26-Damages States Photos of Specimen HHH-N-1.0 99
Fig. 4.27-Crack Width of Specimen HHH-N-1.0 100
Fig. 4.28-Hysteresis Response of Specimen HHH-N-1.0 100
Fig. 4.29-Damages States Photos of Specimen HHH-B-1.0 102
Fig. 4.30-Crack Width of Specimen HHH-B-1.0 103
Fig. 4.31-Hysteresis Response of Specimen HHH-B-1.0 103
Fig. 4.32-Damages States Photos of Specimen CCC-N-1.5 105
Fig. 4.33-Crack Width of Specimen CCC-N-1.5 106
Fig. 4.34-Hysteresis Response of Specimen CCC-N-1.5 106
Fig. 4.35-Damages States Photos of Specimen HCC-N-1.5 109
Fig. 4.36-Crack Width of Specimen HCC-N-1.5 109
Fig. 4.37-Hysteresis Response of Specimen HCC-N-1.5 109
Fig. 4.38-Damages States Photos of Specimen HHH-N-1.5 112
Fig. 4.39-Crack Width of Specimen HHH-N-1.5 112
Fig. 4.40-Hysteresis Response of Specimen HHH-N-1.5 113
Fig. 4.41-Extent of Yielding of the Reinforcement of Specimen CCC-D-0.5 115
Fig. 4.42-Extent of Yielding of the Reinforcement of Specimen CHC-D-0.5 116
Fig. 4.43-Extent of Yielding of the Reinforcement of Specimen HHC-D-0.5 116
Fig. 4.44-Extent of Yielding of the Reinforcement of Specimen HHH-D-0.5 117
Fig. 4.45-Extent of Yielding of the Reinforcement of Specimen HHH-N-0.5 117
Fig. 4.46-Extent of Yielding of the Reinforcement of Specimen CCC-V-1.0 118
Fig. 4.47-Extent of Yielding of the Reinforcement of Specimen HHH-N-1.0 119
Fig. 4.48-Extent of Yielding of the Reinforcement of Specimen HHH-B-1.0 120
Fig. 4.49-Extent of Yielding of the Reinforcement of Specimen CCC-N-1.5 121
Fig. 4.50-Extent of Yielding of the Reinforcement of Specimen HCC-N-1.5 122
Fig. 4.51-Extent of Yielding of the Reinforcement of Specimen HHH-N-1.5 123

CHAPTER 5
Fig. 5.1 -Normalized Shear Stress Demand versus Deformation Capacity
(Regression Analysis) 132
Fig. 5.2 -Normalized Shear Stress Demand versus Deformation Capacity 133
Fig. 5.3 -Deformation Calculation 134

Fig. 5.4 -Deformation Component 136
Fig. 5.5 -Curvature in Target Drift 138
Fig. 5.6 -Vertical Strain from the Outmost Marker of the Wall Base 139

CHAPTER 6
1. ACI Committee 318, 1956, “Building Code Requirements for Structural Concrete (ACI 318-56),” Proceedings, Journal of American Concrete Institute, V. 52, No. 5, May, pp. 913-986.

2. ACI Committee 318, 1963a, “Building Code Requirements for Reinforced Concrete (ACI 318-63),” American Concrete Institute, Detroit, MI, 144 pp.

3. ACI Committee 318, 1963b, “Commentary on Building Code Requirements for Reinforced Concrete (ACI 318-63),” Publication SP-10, ACI Special Publications, Detroit, MI, 91 pp.

4. ACI Committee 318, 1971, “Building Code Requirements for Reinforced Concrete (ACI 318-71),” American Concrete Institute, Detroit, MI, 78 pp.

5. ACI Committee 318, 1983, “Building Code Requirements for Reinforced Concrete (ACI 318-83),” American Concrete Institute, Detroit, MI, 111 pp.

6. ACI Committee 318, 1999, “Building Code Requirements for Reinforced Concrete (ACI 318-99) and Commentary (ACI 318R-99),” American Concrete Institute, Detroit, MI, 392 pp.

7. ACI Committee 318, 2005, “Building Code Requirements for Reinforced Concrete (ACI 318-05) and Commentary (ACI 318R-05),” American Concrete Institute, Detroit, MI, 432 pp.

8. ACI Committee 318, 2014, “Building Code Requirements for Structural Concrete and Commentary (ACI 318-14),” American Concrete Institute, Farmington Hills, MI, 519 pp.

9. ACI Committee 363, 1992, “State-of-the-Art Report on High-Strength Concrete (ACI 363R-92)”, American Concrete Institute, Detroit, MI, 55 pp.

10. ACI Innovation Task Group 4 and Other Contributors, “Report on Structural Design and Detailing for High-Strength Concrete in Moderate to High Seismic Applications (ACI ITG-4.3R-07),” American Concrete Institute, Farmington Hills, MI, 2008, 62 pp.

11. ASCE/SEI 7-16, 2016, “Minimum Design Loads and Associated Criteria for Buildings and Other Structures” American Society of Civil Engineers. Reston, Va., American Society of Civil Engineers, 889 pp.

12. Aoyama, H., 2001, “Design of Modern High-rise Reinforced Concrete Structures,” Series of Innovation in Structures and Construction, Imperial College Press, London, Vol. 3, 460 pp.

13. ASTM A370-14, 2014, “Standard Test Methods and Definitions for Mechanical Testing of Steel Products,” ASTM International, West Conshohocken, Pennsylvania, 50 pp.

14. ASTM A615/A615M-12, 2012, “Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement,” ASTM International, West Conshohocken, PA, 6 pp.

15. ASTM A706/A706M, 2009, “Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement,” ASTM International, West Conshohocken, PA, 6 pp.

16. ASTM A1035/A1035M-11, 2011, “Standard Specification for Deformed and Plain, Low-Carbon, Chromium, Steel Bars for Concrete Reinforcement,” ASTM International, West Conshohocken, PA, 5 pp.

17. ASTM C143/C143M, 2015, “Standard Test Method for Slump of Hydraulic-Cement Concrete,” ASTM International, West Conshohocken, PA, 4 pp.

18. ASTM C1611/C1611M-14, 2014, “Standard Test Method for Slump Flow of Self-Consolidating Concrete,” ASTM International, West Conshohocken, PA, 6 pp.

19. ASTM C617/C617M, 2015, “Standard Practice for Capping Cylindrical Concrete Specimens,” ASTM International, West Conshohocken, PA, 6 pp.

20. Athanasopoulou, A. and Parra-Montesinos, G. J., 2013, “Experimental Study on the Seismic Behavior of High-Performance Fiber-Reinforced Concrete Low-Rise Walls,” ACI Structural Journal, V. 110, No.5, Sep.- Oct., pp. 767-778.

21. Azizinamini, A.; Kuska, S. S. B.; Brungardt, P.; and Hatfield, E., 1994, “Seismic Behavior of Square High-Strength Concrete Columns,” ACI Structural Journal, Vol. 91, No. 3, May-Jun., pp. 336-345.

22. Baek, J-. W., and Park, H-. G., 2015, “Shear-Friction Strength of RC Walls with 550 MPa Bars,” Proceedings of the Tenth Pacific Conference on Earthquake Engineering, Building an Earthquake-Resilient Pacific, Sydney, Nov., 9 pp.

23. Barda, F.; Hanson, J. M.; and Corley, W. G., 1977, “Shear Strength of Low-Rise Walls with Boundary Elements,” Reinforced Concrete in Seismic Zones, SP-53, N. M. Hawkins and D. Mitchell, eds., American Concrete Institute, Farmington Hills, MI, pp. 149-202.

24. Cheng, M.–Y. and Giduquio, M. B., 2014, “Cyclic Behavior of Reinforced Concrete Flexural Members Using High-Strength Flexural Reinforcement,” ACI Structural Journal, V.111, No.4, Jul.-Aug., pp. 893-902.

25. Cheng, M.–Y.; Hung, S.–H.; Lequesne, R. D.; and Lepage, A., 2016, “Earthquake-Resistant Squatwall Reinforced with High Strength Steel,” ACI Structural Journal, V113, No.5, Sep.- Oct., pp. 1065-1076.

26. Fang, I.–K.; Yen, S.–T.; Wang, C.–S.; and Hong, K.–L., 1993, “Cyclic Behavior of Moderately Deep HSC Beams,” ASCE Journal Structural Engineering, V. 119, No. 9, Sep., pp. 2573 – 2592.

27. Farny, J. A., and Panarese, W. C., 1993, “High-Strength Concrete,” Engineering Bulletin, Portland Cement Association, 53 pp.

28. Fintel, M., 1991, “Shearwalls – An Answer for Seismic Resistance?,” Concrete International, Vol. 13, No.7, Jul., pp. 48-53.

29. Giduquio, M. B.; Cheng, M. –Y.; and Wibowo, L. S. B., 2015, “High-Strength Flexural Reinforcement in Reinforced Concrete Flexural Members under Monotonic Loading,” ACI Structural Journal, V. 112, No. 6, Nov.-Dec., pp. 793-804.

30. Greifenhagen, C., and Lestuzzi, P., 2005, “Static Cyclic Test On Lightly Reinforced Concrete Shear Wall,” Engineering Structures, V. 27, Jun., pp. 1703-1712.

31. Gulec, C. K.; Whittaker, A. S.; and Stojadinovic, B., 2008, “Shear Strength of Squat Rectangular Reinforced Concrete Walls,” ACI Structural Journal, V. 105, No.4, Jul.-Aug., pp. 488-497.

32. Gulec, C. K. and Whittaker, A. S., 2011, “Empirical Equations for Peak Shear Strength of Low Aspect Ratio Reinforced Concrete Walls,” ACI Structural Journal, V. 108, No. 1, Jan.-Feb., pp. 80-89.

33. Hognestad, E.; Hanson, N. W.; and McHenry D., 1955, “Concrete Stress Distribution in Ultimate Strength Design,” Proceedings, Journal of the American Concrete Institute, Vol. 52, No. 12, pp. 455-479.

34. Hwang, S. –J.; Fang, W.–H.; Lee, H.–J.; and Yu, H.–W., 2001, “Analytical Model for Predicting Shear Strength of Squat Wall,” Journal of Structural Engineering, ASCE, Vol. 127, No. 1, Jan., pp. 43-50.

35. Hwang, S. –J., and Lee, H. –J., 2002, “Strength Prediction for Discontinuity Regions by Softened Strut-and-Tie Model,” Journal of Structural Engineering, ASCE, Vol. 128, No. 12, Dec., pp. 1519-1526.

36. ICBO, 2001, “Seismic Design Utilizing High-Strength Concrete,” ICBO ER-5536, ICBO Evaluation Service Inc., Whittier, Calif., http://www.icces.org/reports/pdf_files/UBC/5536.pdf

37. Kassem, W., 2015, “Shear Strength of Squat Walls: A Strut-and-Tie Model and Closed-Form Design Formula,” Engineering Structures, V. 84, Nov., pp. 430-438.

38. Lagos, R.; Kupfer, M.; Lidenberg, J.; Bonelli, P.; Saragoni, R.; Gueldelman, T.; Massone, L.; Boroschek, R.; and Yanez, F., 2012, “Seismic Performance of High-Rise Concrete Building in Chile,” International Journal of High-Rise Building, V. 1, No. 3, Sep., pp. 181-194.

39. Lin, C.-H., and Lee, F.-S., 2001, “Ductility of High-Performance Concrete Beams with High-Strength Lateral Reinforcement,” ACI Structural Journal, V. 98, No. 4, July-Aug., pp. 600-608.

40. Maier, J., 1992, “Shear Wall Tests.”, Preliminary Proceedings, International Workshop on Concrete Shear in Earthquake, University of Houston, Texas, pp. 85-94.

41. Mander, J. B.; Priestley, M. J. N.; and Park, R., 1988, “Theoretical Stress-Strain Model for Confined Concrete,” Journal of Structural Engineering, ASCE, Vol. 114, No. 8, Aug., pp. 1804-1825.

42. Moehle, J. P.; Ghodsi, T.; Hooper, J. D.; Fields, D. C.; and Gedhada, R., (2011), “Seismic Design of Cast-in-Place Concrete Special Structural Walls and Coupling Beams: A Guide for Practicing Engineers,” National Institute of Standards and Technology, pp. 37.

43. NIST GCR 14-917-30, “Use of High-Strength Reinforcement in Earthquake-Resistant Concrete Structures,” NEHRP Consultant Joint Venture, California, 2014, 231 pp.

44. Park, H. -G.; Baek, J. -W.; Lee, J.- H.; and Shin, H. -M., 2015, “Cyclic Loading Tests for Shear Strength of Low-Rise Reinforced Concrete Walls with Grade 550 MPa Bars,” ACI Structural Journal, V. 112, No. 3, May-June, pp. 299-310.

45. Rashid, M. A., and Mansur, M. A., 2005, “Reinforced High-Strength Concrete Beams in Flexure,” ACI Structural Journal, V. 102, No. 3, May-June, pp. 462-471.

46. Rautenberg, J. M.; Pujol, S.; Tavallali, H.; and Lepage, A., 2013, “Drift Capacity of Concrete Columns Reinforced with High-Strength Steel,” ACI Structural Journal, V.110, No. 2, Mar.-Apr., pp. 307-317.

47. Salonikios, N. T., Kappos, J. A., Tegos, A. I., Penelis, G. G., 1999, “Cyclic Load Behavior of Low-Slenderness Reinforced Concrete Walls: Design Basis and Test Results.”, ACI Structural Journal, Vol. 96, No. 4, Jul.-Aug., pp. 649-660.

48. Salonikios, N. T., Kappos, J. A., Tegos, A. I., Penelis, G. G., 2000, “Cyclic Load Behavior of Low-Slenderness Reinforced Concrete Walls: Failure Modes, Strength and Deformation Analysis, and Design Implications.”, ACI Structural Journal, Vol. 97, No. 1, Jan.-Feb., pp. 132-142.

49. Sánchez-Alejandre, A. and Alcocer, S. M., 2010, “Shear Strength of Squat Reinforced Concrete Walls Subjected to Earthquake Loading – trends and models.”, Engineering Structures, V. 32, May, pp. 2466–2476.

50. Shahrooz, B. M.; Reis, J. M.; Wells, E. L.; Miller, R. A.; Harries, K. A.; and Russell, H. G., 2014, “Flexural Members with High-Strength Reinforcement: Behavior and Code Implications,” Journal of Bridge Engineering, ASCE, V. 19, No. 5, May, 7 pp.

51. Smith, G. J. and Rad, F. N., 1989, “Economic Advantages of High-Strength Concretes in Columns,” Concrete International, American Concrete Institute, V. 11, No. 4, Apr., pp. 37-43.

52. Sumpter, M. S.; Rizkalla, S. H.; and Zia, P., 2009, “Behavior of High-Performance Steel as Shear Reinforcement for Concrete Beams,” ACI Structural Journal, V. 106, No. 2, Mar.-Apr., pp. 171-177.

53. Taleb, R.; Kono, S.; Tani, M.; and Sakashita, M., 2014, “Effect of End Region Confinement on Seismic Performance of RC Cantilever Walls,” Proceedings of the 10th National Conference in Earthquake Engineering, Earthquake Engineering Research Institute, Anchorage, Alaska, Jul., 11 pp.

54. Tavallali, H.; Lepage, A.; Rautenberg, J. M. and Pujol, S., 2014, “Concrete Beams Reinforced with High-Strength Steel Subjected to Displacement Reversals,” ACI Structural Journal, V. 111, No. 1-6, Jan.-Dec., pp. 1037-1047.

55. Wallace, J. W., 2011, “February 27, 2010 Chile Earthquake: Preliminary Observations on Structural Performance and Implications for U.S. Building Code and Standards,” ASCE Structure Congress, Las Vegas, Nevada, Apr., pp. 1672-1685.

56. Whitney, C. S., 1937, “Design of Reinforced Concrete Members under Flexure or Combined Flexural and Direct Compression,” Proceedings, Journal of the American Concrete Institute, Vol. 33, No. 3, March, pp. 483-498.

57. Wischers, G., 1979, “Applications and Effects of Compressive Loads on Concrete,” Betontechnische Berichte 1978, Betone Verlag GmbH, Dusseldorf, pp. 31–56.

58. Wood, S. L.; Wight, J. K.; and Moehle, J. P., 1987, “The 1985 Chile Earthquake Observation on Earthquake-Resistant Construction in Vina Del Mar,” Report to the National Science Foundation, University of Illinois, 187 pp.

59. Wood, S. L., 1990, “Shear Strength of Low-Rise Reinforced Concrete Walls,” ACI Structural Journal, V. 87, No. 1, Jan.-Feb., pp. 99-107.

60. Wood, S., 1991, “Performance of reinforced concrete buildings during the 1985 Chile earthquake: Implications for the design of structural walls,” Earthquake Spectra, V. 7, No.4, Nov., pp.607–638.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top