跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/25 18:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昱亘
研究生(外文):CHEN, YU-HSUAN
論文名稱:氧化石墨烯複合材料之官能基反應、偶極分佈及表面增益 拉曼散射效應研究
論文名稱(外文):Graphene Oxide Composites: Reaction of Function Groups, Dipole Distribution, and SERS
指導教授:王瑞琪王瑞琪引用關係
指導教授(外文):WANG, RUEY-CHI
口試委員:王瑞琪劉全璞張書文
口試委員(外文):WANG, RUEY-CHILIU, CHUAN-PUCHANG, SHU-WEN
口試日期:2018-07-12
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:化學工程及材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:125
中文關鍵詞:氧化石墨烯氧化鋅銅箔表面增益拉曼散射偶極矩局部電場
外文關鍵詞:graphene oxidezinc oxidecooper foilsurface-enhanced Raman scatteringdipole momentlocal electric field
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究以濺鍍法製備氧化鋅薄膜,以漢墨法(Hummers method)合成氧化石墨烯,
並利用抽濾轉印法製備氧化石墨烯/氧化鋅及氧化石墨烯/銅箔複合材料,探討這兩系
列的複合材料經熱處理後對表面增益拉曼散射(SERS)提升的機制。第一部分將氧化
石墨烯/氧化鋅複合材料進行熱處理,探討溫度、時間、氧化石墨烯厚度及熱處理氣
氛對含氧官能基的影響。結果顯示石墨烯厚度173 nm、於氬氣氣氛下熱處理100℃持
溫3 小時的試片,具有最高含量的含氧官能基。靜電力顯微鏡(Electrostatic force
microscopy,EFM)量測結果顯示,當含氧官能基含量越高,在EFM 量測出來的相位角
負值越大,顯示偶極矩越大。此外,SERS 的量測顯示當GO 含氧官能基越多,則增
益效果越好。本研究並透過紫外光光電子能譜儀(UPS)進行試片功函數檢測,由費米
能階的相對位置可排除因雷射光能量造成的電荷轉移,顯示官能基的偶極電場是
SERS 增益的主要機制。
第二部分將氧化石墨烯/銅箔複合材料進行熱處理,探討氧化石墨烯/銅箔複合材
料在熱處理後對含氧官能基及SERS 效果的影響。結果顯示經熱處理後,含氧官能基
的含量有下降的現象,但SERS 效果卻有提升的現象。X 光光電子能譜儀顯示經400℃
持溫2 小時熱處理的試片,出現C-O-Cu 的鍵結,SERS 效果也最好。經由第一原理
的模擬計算,石墨烯上的含氧官能基與Cu 離子鍵結後偶極矩將大幅增加,因此推測
氧化石墨烯/銅箔複合材料在熱處理後的SERS 效果增強機制是藉由C-O-Cu 系列官
能基所產生的偶極矩所貢獻。
In this work, ZnO thin films were deposited on silicon by rf magnetron sputtering, and graphene oxide (GO) was synthesized by Hummers' method. Furthermore, GO/ZnO and GO/Cu composites were prepared by depositing GO layers on ZnO thin films and Cu foils, respectively, via suction filtration and transfer printing to investigate the mechanisms of enhanced surface-enhanced Raman scattering (SERS) for GO/ZnO and GO/Cu after proper heat treatments.
In the first part, GO/ZnO composites were annealed to investigate the effects of annealing temperature, time, atmosphere and GO thickness on oxygen-contained functional groups (OFGs). The results show the composite with GO thickness of 173 nm annealed at 100℃for 3 hours in Ar atmosphere has a highest amount of OFGs. Electrostatic force microscopy (EFM) shows the samples with more OFGs exhibit larger negative phase differences, indicating larger dipole moments.
Furthermore, SERS measurements show the samples with more OFGs exhibiting larger enhancement factors. In this work, the work function of GO was characterized by UV photoelectron spectroscopy (UPS). The possible SERS mechanisms of charge-transferring by laser pumping can be ruled out by considering the relative position of Fermi level.
Accordingly, the local electric fields were caused by OFGs which should be main mechanisms for the SERS.
In the second part, the GO/Cu composites were heated to investigate the effect of annealing on OFGs and SERS. The results show that the content of OFGs decrease after heat treatment, but the SERS effect is improved. X-ray photoelectron spectroscopy (XPS) and SERS measurements show the GO/Cu composites with heat treatment at 400°C for 2hours exhibit the signal corresponding to C-O-Cu bond and the highest SERS enhancement factor. Through the calculation of first principle, the dipole moment of the OFGs will be
greatly increased by bonding with Cu2+ ions. Therefore, the excellent SERS effect should be attributed to the C-O-Cu based on OFGs generated by the diffusion and bonding of Cu with GO after annealing.
圖目錄.............................................................................................................IV
表目錄.............................................................................................................XI
第一章 前言 ..............................................................................................4
第二章 理論基礎與文獻回顧..................................................................5
2.1 拉曼散射原理............................................................................ 5
2.2 表面增益拉曼散射(SERS)機制................................................ 6
2.2.1 電磁機制 ...............................................................................8
2.2.2 傳統化學機制.....................................................................13
2.2.3 偶極矩之局部電場.............................................................19
2.3 材料簡介 .................................................................................. 32
2.3.1 石墨烯 .................................................................................32
2.3.2 氧化石墨烯及還原氧化石墨烯.........................................32
2.3.3 氧化鋅 .................................................................................34
2.4 研究目標 .................................................................................. 35
第三章氧化石墨烯/氧化鋅複合材料系列.................................................37
3.1 實驗............................................................................................ 37
3.1.1 實驗設計 .............................................................................37
3.1.2 實驗材料 .............................................................................41
3.1.3 氧化石墨烯/氧化鋅複合材料製備及後處理....................42
3.1.3.1 氧化鋅反應層製備......................................................42
3.1.3.2 氧化石墨烯製備..........................................................42
3.1.3.3 氧化石墨烯/氧化鋅複合材料之製備.........................43
3.1.3.4 氧化石墨烯/氧化鋅複合材料熱處理.........................43
3.1.4 材料分析 .............................................................................45
3.1.5 表面增益拉曼散射效應量測.............................................46
3.2 結果與討論 .............................................................................. 47
3.2.1 熱處理溫度效應.................................................................47
3.2.1.1 形貌鑑定.......................................................................47
3.2.1.2 表面增益拉曼散射效果量測......................................49
3.2.2 氧化石墨烯厚度效應.........................................................52
3.2.2.1 形貌鑑定 ......................................................................52
3.2.2.2 表面增益拉曼散射效果量測......................................54
3.2.2.3 含氧官能基檢測..........................................................57
3.2.3 熱處理時間效應.................................................................59
3.2.3.1 形貌鑑定 ......................................................................59
3.2.3.2 表面增益拉曼散射效果量測......................................61
3.2.4 熱處理氣氛效應.................................................................64
3.2.4.1 形貌鑑定 ......................................................................64
3.2.4.2 表面增益拉曼散射效果量測......................................66
3.2.4.3 含氧官能基檢測..........................................................69
3.2.4.4 含氧官能基空間分佈..................................................71
3.2.4.5 氧化石墨烯/氧化鋅複合材料的表面電子能帶結構.75
3.2.4.6 性能驗證 ......................................................................79
3.3 結論.......................................................................................... 84
第四章 氧化石墨烯/金屬基板複合材料系列.......................................85
4.1 實驗設計.................................................................................. 85
4.2 實驗材料.................................................................................. 87
4.3 氧化石墨烯/銅箔複合材料製備及後處理............................. 88
4.3.1 氧化石墨烯/銅箔複合材料之製備....................................88
4.3.2 氧化石墨烯/銅箔複合材料熱處理....................................88
4.3.3 表面增益拉曼散射效應量測.............................................88
4.4 結果與討論.............................................................................. 89
4.4.1 形貌鑑定 .............................................................................89
4.4.2 表面增益拉曼散射效果量測.............................................91
4.4.3 含氧官能基檢測.................................................................93
4.4.4 氧化石墨烯/銅箔複合材料的表面電子能帶結構............96
4.4.5 氧化石墨烯/銅箔複合材料之TEM 分析..........................98
4.4.6 以第一原理計算氧化石墨烯/銅箔複合材料表面偶極..102
4.5 結論........................................................................................ 106
第五章 結論 ..........................................................................................107
參考文獻.......................................................................................................108
[1] 汪建民, 材料分析, 2014.
[2] E. Smith and G. Dent, Modern Raman Spectroscopy - A Practical
Approach, 2005.
[3] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman spectra of
pyridine adsorbed at a silver electrode," Chemical Physics Letters, vol.
26, pp. 163-166, 1974/05/15/ 1974.
[4] B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne,
"SERS: Materials, applications, and the future," Materials Today, vol.
15, pp. 16-25, Jan-Feb 2012.
[5] E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, "Surface
enhanced Raman scattering enhancement factors: a comprehensive
study," Journal of Physical Chemistry C, vol. 111, pp. 13794-13803, Sep
2007.
[6] S. Schlucker, "Surface-Enhanced Raman Spectroscopy: Concepts and
Chemical Applications," Angewandte Chemie-International Edition, vol.
53, pp. 4756-4795, May 2014.
[7] G. Sun, Surface-enhanced Raman Spectroscopy Investigation Surfaces
and Interfaces in Thin Films on Metals. Germany: Ruhr-Universitat,
2007.
[8] N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, et al.,"Controlling the optical response of regular arrays of gold particles for
surface-enhanced Raman scattering," Physical Review B, vol. 65, Feb
2002.
[9] D. J. Han, K. S. Choi, F. Liu, and T. S. Seo, "Effect of Chemical and
Structural Feature of Graphene on Surface Enhanced Raman Scattering,"
Journal of Nanoscience and Nanotechnology, vol. 13, pp. 8154-8161,
Dec 2013.
[10] L. L. He, C. Q. Liu, J. G. Hu, W. M. Gu, Y. Zhang, L. L. Dong, et al.,
"Hydrophobic ligand-mediated hierarchical Cu nanoparticles on reduced
graphene oxides for SERS platform," Crystengcomm, vol. 18, pp. 7764-
7771, 2016.
[11] R. Aroca, Surface-Enhanced Vibrational Spectroscopy. Ltd: John Wiley
& Sons, 2007.
[12] H. P. Yang, H. L. Hu, Z. H. Ni, C. K. Poh, C. X. Cong, J. Y. Lin, et al.,
"Comparison of surface-enhanced Raman scattering on graphene oxide,
reduced graphene oxide and graphene surfaces," Carbon, vol. 62, pp.
422-429, Oct 2013.
[13] T. T. Yan, L. L. Zhang, T. T. Jiang, Z. M. Bai, X. X. Yu, P. Dai, et al.,
"Controllable SERS performance for the flexible paper-like films of
reduced graphene oxide," Applied Surface Science, vol. 419, pp. 373-
381, Oct 2017.
[14] R. C. Wang and H. Y. Lin, "Efficient surface enhanced Raman scatteringfrom Cu2O porous nanowires transformed from CuO nanowires by
plasma treatments," Materials Chemistry and Physics, vol. 136, pp. 661-
665, Oct 2012.
[15] X. X. Yu, H. B. Cai, W. H. Zhang, X. J. Li, N. Pan, Y. Luo, et al., "Tuning
Chemical Enhancement of SERS by Controlling the Chemical
Reduction of Graphene Oxide Nanosheets," Acs Nano, vol. 5, pp. 952-
958, Feb 2011.
[16] R.-C. Wang, E.-C. Kung, and Y.-H. Chen, "Ultrahigh sensitive metalfree
SERS platforms by functional-groups," Sensors and Actuators B:
Chemical, vol. 263, pp. 258-265, 2018/06/15/ 2018.
[17] X. X. Yu, K. Lin, K. Q. Qiu, H. B. Cai, X. J. Li, J. Y. Liu, et al.,
"Increased chemical enhancement of Raman spectra for molecules
adsorbed on fluorinated reduced graphene oxide," Carbon, vol. 50, pp.
4512-4517, Oct 2012.
[18] H. Y. Mao, R. Wang, J. Q. Zhong, S. Zhong, and W. Chen, "Mildly O-2
plasma treated CVD graphene as a promising platform for molecular
sensing," Carbon, vol. 76, pp. 212-219, Sep 2014.
[19] H. Xu, L. M. Xie, H. L. Zhang, and J. Zhang, "Effect of Graphene Fermi
Level on the Raman Scattering Intensity of Molecules on Graphene,"
Acs Nano, vol. 5, pp. 5338-5344, Jul 2011.
[20] A. M. Michaels, M. Nirmal, and L. E. Brus, "Surface Enhanced Raman
Spectroscopy of Individual Rhodamine 6G Molecules on Large AgNanocrystals," Journal of the American Chemical Society, vol. 121, pp.
9932-9939, 1999/11/01 1999.
[21] R. C. Wang, Y. C. Chen, S. J. Chen, and Y. M. Chang, "Unusual
functionalization of reduced graphene oxide for excellent chemical
surface-enhanced Raman scattering by coupling with ZnO," Carbon, vol.
70, pp. 215-223, Apr 2014.
[22] V. V. Chaban and O. V. Prezhdo, "Structure and energetics of graphene
oxide isomers: ab initio thermodynamic analysis," Nanoscale, vol. 7, pp.
17055-17062, 2015.
[23] A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F.
Miao, et al., "Superior thermal conductivity of single-layer graphene,"
Nano Letters, vol. 8, pp. 902-907, Mar 2008.
[24] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, et
al., "Ultrahigh electron mobility in suspended graphene," Solid State
Communications, vol. 146, pp. 351-355, Jun 2008.
[25] Y. W. Zhu, S. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts, et al.,
"Graphene and Graphene Oxide: Synthesis, Properties, and
Applications," Advanced Materials, vol. 22, pp. 3906-3924, Sep 2010.
[26] W. S. Hummers and R. E. Offeman, "Preparation of Graphitic Oxide,"
Journal of the American Chemical Society, vol. 80, pp. 1339-1339,
1958/03/01 1958.
[27] M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho, and Y. J. Chabal,"Unusual infrared-absorption mechanism in thermally reduced graphene
oxide," Nature Materials, vol. 9, pp. 840-845, Oct 2010.
[28] T. Dahlberg, The first order Raman spectrum of isotope labelled
nitrogen-doped reduced graphene oxide, 2016.
[29] S. Das, K. Dutta, and A. Pramanik, "Morphology control of ZnO with
citrate: a time and concentration dependent mechanistic insight,"
Crystengcomm, vol. 15, pp. 6349-6358, 2013.
[30] S. Huh, J. Park, Y. S. Kim, K. S. Kim, B. H. Hong, and J. M. Nam,
"UV/Ozone-Oxidized Large-Scale Graphene Platform with Large
Chemical Enhancement in Surface-Enhanced Raman Scattering," Acs
Nano, vol. 5, pp. 9799-9806, Dec 2011.
[31] Y. Zhang, Y. Shi, M. Wu, K. Zhang, B. Man, and M. Liu, "Synthesis and
Surface-Enhanced Raman Scattering of Ultrathin SnSe2 Nanoflakes by
Chemical Vapor Deposition," Nanomaterials, vol. 8, p. 515, 2018.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊