跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 02:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何昌祐
研究生(外文):HO, CHANG-YU
論文名稱:不同操作參數對二階段流體化床氣化程序中合成氣與重金屬分佈之影響
論文名稱(外文):The Effect of Different Operating Parameters on the Distribution of Syngas and Heavy metals in Two-stage Fluidized Bed Gasifier Process
指導教授:林秋良
指導教授(外文):LIN, CHIOU-LIANG
口試委員:劉禎淑周經棟
口試委員(外文):LIU, ZHEN-SHUCHOU, JING-DONG
口試日期:2017-11-24
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:土木與環境工程學系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:144
中文關鍵詞:流體化床氣化重金屬ERS/B活性碳
外文關鍵詞:Fluidized bedGasificationHeavy metalERS/BActivate carbon
相關次數:
  • 被引用被引用:2
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要探討在二階段流體化床氣化過程,探討溫度、當量比(Equivalence ratio)、水氣比(Steam/Biomass ratio)、床質粒徑、氣速與添加劑(活性碳)對於產氣及重金屬分佈之影響,實驗操作條件包含:一、二階溫度、當量比、水氣比、二階床質粒徑與氣速,進行氣化實驗,並探討添加劑的使用,對於產氣過程中合成氣的組成與重金屬截留和逸散之影響。
氣化參數中,實驗結果顯示,一、二階溫度900℃時,得到最佳的產氫比例,在重金屬方面,一、二階氣化爐溫度500℃時,有最佳的底渣重金屬Cu、Pb、Zn截留率;當量比操作在0.3時,得到最佳的氫氣比例,對底渣重金屬Cu、Pb、Zn有最佳的截留效果;水氣比操作在0.6時,得到最佳的氫氣比例,對底渣重金屬Cu、Pb、Zn有最佳的截留效果。
流體化參數中,實驗結果顯示,二階床質粒徑操作在460 μm時,得到最佳的氫氣比例,對底渣重金屬Cu、Pb、Zn有最佳的截留率;氣速操作在1.5時,到最佳的氫氣比例,對底渣重金屬(Cu、Pb、Zn)有最佳的截留率。
使用生質物型活性碳作為添加劑,在各種不同操作條件下,AC皆有助於提升焦油及焦碳重組裂解反應,增加氣體的產氣量。在底渣重金屬的截留率方面,可以發現在不同的操作條件下,有效提升對重金屬Cu、Pb、Zn的吸附效果。

In this study, the effects of temperature, equivalence ratio, steam/biomass ratio, bed material size, gas velocity and additives (activated carbon) on the distribution of syngas and heavy metals during two-stage fluidized bed gasification process.
According to experimental results, the first and second stage temperature were controlled at 900℃, the generation ratio of hydrogen production was highest. However, for heavy metal distribution, the first and second stage temperature were controlled at 500 ℃, there has the best heavy metals (Cu, Pb, Zn) retention rate in bed materials. When the equivalent ratio was operated at 0.3 and steam/biomass ratio was 0.6, the best proportion of hydrogen was obtained, and the best retention ratio of Cu, Pb and Zn in the bottom ash was also obtained. For fluidization parameters, when the 460 μm silica sand was used as bed material in second stage and gas velocity was operated at 1.5, the best proportion of hydrogen and heavy metal retention ratio were obtained.
For using bioactive carbon (AC) as an additive, AC can improve the pyrolysis reaction of tar and char under various operating conditions and increase syngas production. Additionally, AC can adsorb heavy metal from first stage during gasification, and enhance the retention ratio of heavy metal in second stage bed material during gasification.

目錄 I
圖目錄 IV
表目錄 X
第一章 前言 1
1.1 研究動機 2
1.2 研究目的 3
1.3 研究架構 4
第二章 文獻回顧 5
2.1 都市廢棄物介紹 5
2.2 能源發展現況 6
2.3 生質能源發展 9
2.3.1 生質能源類型 10
2.3.2 生質能源技術 11
2.4 氣化技術 13
2.4.1 氣化反應機制 13
2.4.2 氣化爐類型 15
2.4.3 流體化床氣化爐操作參數 17
2.5 重金屬在熱處理過程之流佈 30
2.6 文獻回顧總結 33
第三章、材料與方法 35
3.1 流體化床氣化爐 35
3.2 人工模擬廢棄物 36
3.3 實驗流程 37
3.4 床質與添加劑的組成分 39
3.5 分析設備 40
3.6 實驗試程 41
第四章、結果與討論 44
4.1 操作參數對二階段氣化過程產氣組成之影響 44
4.1.1 操作時間對二階段氣化過程產氣組成之影響 44
4.1.2 溫度對二階段氣化過程產氣組成之影響 45
4.1.3 ER值對二階段氣化過程產氣組成之影響 48
4.1.4 S/B對二階段氣化過程產氣組成之影響 50
4.1.5 粒徑對二階段氣化過程產氣組成之影響 52
4.1.6 氣速對二階段氣化過程產氣組成之影響 54
4.2 添加劑對二階段氣化過程產氣組成之影響 56
4.2.1 添加劑與溫度對二階段氣化過程產氣組成之影響 56
4.2.2 添加劑與ER值對二階段氣化過程產氣組成之影響 58
4.2.3 添加劑與S/B對二階段氣化過程產氣組成之影響 60
4.2.4 添加劑與粒徑對二階段氣化過程產氣組成之影響 62
4.2.5 添加劑與氣速對二階段氣化過程產氣組成之影響 64
4.3 操作參數對二階段氣化過程重金屬分佈之影響 66
4.3.1 溫度對二階段氣化過程重金屬截留與逸散之影響 66
4.3.3 ER值對二階段氣化過程重金屬截留與逸散之影響 70
4.3.5 S/B對二階段氣化過程重金屬截留與逸散之影響 74
4.3.7 粒徑對二階段氣化過程重金屬截留與逸散之影響 78
4.3.9 氣速對二階段氣化過程重金屬截留與逸散之影響 81
4.4 添加劑對二階段氣化過程重金屬分佈之影響 85
4.4.1 添加劑與溫度對二階段氣化過程重金屬截留與逸散之影響 85
4.4.3 添加劑與ER值對二階段氣化過程重金屬截留之影響 88
4.4.5 添加劑與S/B對二階段氣化過程重金屬截留之影響 91
4.4.7 添加劑與粒徑對二階段氣化過程重金屬截留之影響 94
4.4.9 添加劑與氣速對二階段氣化過程重金屬截留之影響 97
4.5 小結 100
4.5.1 添加劑與不同操作參數對二階段氣化過程產氣之影響(比較) 100
4.5.2 不同添加劑對二階段氣化過程產重金屬截留與逸散之影響(比較) 107
第五章、結論與建議 110
5.1 結論 110
5.2 建議 112
參考文獻 113
附錄 122



行政院環境保護署 (2016),廢棄物統計年報,中華民國。
經濟部能源局 (2016),能源統計手冊,中華民國。
經濟部能源局 (2016),能源產業發展白皮書,中華民國。
錢建嵩 (1992),流體化床技術,高立圖書有限公司,中華民國。
Anukam, A., Mamphweli, S., Reddy, P., Meyer, E. and Okoh, O. (2016) Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: A comprehensive review. Renew. Sust. Energ Rev. 66, 775-801.
Abu El-Rub, Z., Bramer, E. A. and Brem, G. (2004) Review of Catalysts for Tar Elimination in Biomass Gasification Processes. Ind. Eng. Chem. Fundam. 43, 6911-6919.
Buragohain, B., Mahanta, P. and Moholkar, V.S. (2010) Biomass gasification for decentralized power generation: The Indian perspective. Renew. Sust. Energ Rev. 14, 73-92.
Bello, M.M., Raman, A.A.A. and Purushothaman, M. (2017) Applications of fluidized bed reactors in wastewater treatment – A review of the major design and operational parameters. J. clean prod. 141, 1492-1514.
Cho, M.H., Mun, T.Y. and Kim, J.S. (2013) Production of low-tar producer gas from air gasification of mixed plastic waste in a two-stage gasifier using olivine combined with activated carbon. Energy. 58, 688-694.
Choi, Y.K., Cho, M.H. and Kim, J.S. (2015) Steam/oxygen gasification of dried sewage sludge in a two-stage gasifier: Effects of the steam to fuel ratio and ash of the activated carbon on the production of hydrogen and tar removal. Energy. 91, 160-167.
Choi, Y.K., Cho, M.H. and Kim, J.S. (2016) Air gasification of dried sewage sludge in a two-stage gasifier. Part 4: Application of additives including Ni-impregnated activated carbon for the production of a tar-free and H2-rich producer gas with a low NH3 content. Int. J. Hydrogen Energy. 41, 1460-1467.
Choi, Y.K., Mun, T.Y., Cho, M.H. and Kim, J.S. (2016) Gasification of dried sewage sludge in a newly developed three-stage gasifier: Effect of each reactor temperature on the producer gas composition and impurity removal. Energy. 114, 141-128.
Choi, Y.K., Ko, J.H. and Kim, J.S. (2017) A new type three-stage gasification of dried sewage sludge: Effects of equivalence ratio, weight ratio of activated carbon to feed, and feed rate on gas composition and tar, NH3, and H2S removal and results of approximately 5 h gasification. Energy. 118, 139-146.
Couto, N.D., Silva, V.B. and Rouboa, A. (2016) Assessment on steam gasification of municipal solid waste against biomass substrates. Energy Convers. Manage. 124, 92-103.
Couto, N., Monteiro, E., Silva, V. and Rouboa, A. (2016) Hydrogen-rich gas from gasification of Portuguese municipal solid wastes. Int. J. Hydrogen Energy. 41, 10619-10630.
Couto, N.D., Silva, V.B., Monteiro, E. and Rouboa, A. (2015) Assessment of municipal solid wastes gasification in a semi-industrial gasifier using syngas quality indices. Energy. 93, 864-873.
Gasparatos, A., Doll, C.N.H., Esteban, M., Ahmed, A. and Olang, T.A. (2017) Renewable energy and biodiversity: Implications for transitioning to a Green Economy. Renew. Sust. Energ Rev. 70, 161-184.
Hamamre, Z.A., Saidan, M., Hararah, M., Rawajfeh, K., Alkhasawneh, H.E. and Shannag, M.A. (2017) Wastes and biomass materials as sustainable-renewable energy resources for Jordan. Renew. Sust. Energ Rev. 67, 295-314.
Holm, O. and Simon F.G. (2017) Innovative treatment trains of bottom ash (BA) from municipal solid waste incineration (MSWI) in Germany. Waste Manage. 59, 229-236.
Kumar, A., Kumar, N., Baredar, P. and Shukla, A. (2015) A review on biomass energy resources, potential, conversion and policy in India. Renew. Sust. Energ Rev. 45, 530-539.
Kang, S., Jiang, J.C. and Cui, D.D. (2011) Preparation of activated carbon with highly developed mesoporous structure from Camellia oleifera shell through water vapor gasification and phosphoric acid modification. Biomass Bioenergy. 35, 364-3647.
Khonde, R. and Chaurasia, A. (2016) Rice husk gasification in a two-stage fixed-bed gasifier: Production of hydrogen rich syngas and kinetics. Int. J. Hydrogen Energy. 41, 8793-8802.
Kuo, N.W., Ma, H.W., Yang, Y.M., Hsiao, T.Y. and Huang, C.M. (2007) An investigation on the potential of metal recovery from the municipal waste incinerator in Taiwan. Waste Manage. 27, 1673-1679.
Kuo, J.H., Lin, C.L., Chang T.J., Weng W.C. and Liu J.Y. (2016) Impact of using calcium oxide as a bed material on hydrogen production in two-stage fluidized bed gasification. Int. J. Hydrogen Energy. 41, 17286-17289.
Kowalski, P.R, Kasina, M. and Michalik, M. (2016) Metallic Elements Fractionation in Municipal Solid Waste Incineration Residues. Energy Procedia. 97, 31-36.
Liu, C.M. and Wu, S.Y. (2016) From biomass waste to biofuels and biomaterial building blocks. Renew Energ. 96, 1056-1062.
Liu, Z.S., Chen, J.Y. and Peng, Y.H (2013) Activated carbon fibers impregnated with Pd and Pt catalysts for toluene removal. J. Hazard. Mater. 256-257, 49-55.
Liu, Z.S., Lin, C.L., Chang, T.J. and Weng, W.C. (2016) Waste-gasification efficiency of a two-stage fluidized-bed gasification system. Waste Manage. 48, 250-256.
Mao, G., Zou, H., Chen, G., D, H. and Zuo, J. (2015) Past, current and future of biomass energy research: A bibliometric analysis. Renew. Sust. Energ Rev. 52, 1823-1833.
Mastelloe, M.L. and Zaccariello, L. (2013) Metals flow analysis applied to the hydrogen production by catalytic gasification of plastics. Int. J. Hydrogen Energy. 38, 3621-3629.
Mazumder, J. and Lasa H.I. (2016) Catalytic steam gasification of biomass surrogates: Thermodynamics and effect of operating conditions. Chem. Eng. J. 293, 232-242.
Mirmoshtaghi, G., Li, H., Thorin, E. and Dahlquist, E. (2016) Evaluation of different biomass gasification modeling approaches for fluidized bed gasifiers. Biomass Bioenergy. 91, 69-82.
Mun, T.Y., Kim, J.W. and Kim, J.S. (2012) Air gasification of railroad wood ties treated with creosote: Effects of additives and their combination on the removal of tar in a two-stage gasifier. Fuel. 102, 326-332.
Mun, T.Y., Kim, J.W. and Kim, J.S. (2013) Air gasification of dried sewage sludge in a two-stage gasifier: Part 1. The effects and reusability of additives on the removal of tar and hydrogen production. Int. J. Hydrogen Energy. 38, 5226-5234.
McKendry, P. (2002a) Energy production from biomass (part 1): overview of biomass. Bioresource Technol. 83, 37-46.
McKendry, P. (2002b) Energy production from biomass (part 2): conversion technologies. Bioresource Technol. 83, 47-54.
McKendry, P. (2002c) Energy production from biomass (part 3): gasification technologies. Bioresource Technol. 83, 55-63.
Moya, D., Aldas, C., Lopez, G. and Kaparaju, P. (2017) Municipal solid waste as a valuable renewable energy resource: a worldwide opportunity of energy recovery by using Waste-To-Energy Technologies. Energy Procedia. 134, 286-295.
Niu, Y., Han, F., Chen Y., Lyu, Y. and Wang, L. (2016) Experimental study on steam gasification of pine particles for hydrogen-rich gas. J. Energy. Inst.
Panwar , N.L., Kothari, R. and Tyagi, V.V. (2012) Thermo chemical conversion of biomass – Eco friendly energy routes. Renew. Sust. Energ Rev. 16, 1801-1816.
Patel, V.R., Upadhyay, D.S. and Patel, R.N. (2014) Gasification of lignite in a fixed bed reactor: Influence of particle size on performance of downdraft gasifier. Energy. 78, 232-332.
Pudasainee, D., Paur, H.R., Fleck, S. and Seifert, H. (2014) Trace metals emission in syngas from biomass gasification. Fuel Process. Technol. 2014, 54-60.
Perez, N.P., Machin, E.B., Pedroso, D.T., Antunes, J.S. and Silveira, J.L. (2014) Fluid-dynamic assessment of sugarcane bagasse to use as feedstock in bubbling fluidized bed gasifiers. Appl. Therm. Eng. 73, 238-244.
Prando, D., Ail, S.S., Chiaramonti, D., Baratieri, M. and Dasappa, S. (2016) Characterisation of the producer gas from an open top gasifier: Assessment of different tar analysis approaches. Fuel. 181, 566-572.
Ramachandra, T.V., Bharath, H.A., Kulkarni, G. and Han, S.S. (2018) Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renew. Sust. Energ. Rev. 82, 1122-1136.
Soria, J., Gauthier, D., Falcoz, Q., Flamant, G. and Mazza, G. (2013) Local CFD kinetic model of cadmium vaporization during fluid bed incineration of municipal solid waste. J. Hazard. Mater. 248-249, 269-284.
Samiran, N.A., Jaafar, M.N.M., Ng, J.H., Lam, S.S. and Chong, C.T. (2016) Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production. Renew. Sust. Energ Rev. 62, 1047-1062. Appl Energ. 160, 808-819.
Shen, Y., Zhao, P., Shao, Q., Takahashi, F and Yoshikawa, K. (2015) In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier.
Shen, Y. and Yoshikawa, K. (2013) Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—A review. Renew. Sust. Energ Rev. 21, 371-392.
Singh, J. (2017) Management of the agricultural biomass on decentralized basis for producing sustainable power in India. J. clean prod.142, 3985-4000.
Thakkar, M., Makwana, J.P., Mohanty, P., Shah, M. and Singh, V. (2016) In bed catalytic tar reduction in the autothermal fluidized bed gasification of rice husk: Extraction of silica, energy and cost analysis. Ind. Crop. Prod. 87, 324-332.
Tursunov, O. (2014) A comparison of catalysts zeolite and calcined dolomite for gas production from pyrolysis of municipal solid waste (MSW). Ecol. Eng. 69, 237-243.
Wang, D., Yuan, W. and Ji, W. (2011) Char and char-supported nickel catalysts for secondary syngas cleanup and conditioning. Appl Energ. 88, 1656-1663.
Wang, J., Cheng, G., You, Y., Xiao, B., Liu, S., He, P., Guo, D., Guo, X. and Zhana G. (2012) Hydrogen-rich gas production by steam gasification of municipal solid waste (MSW) using NiO supported on modified dolomite. Int. J. Hydrogen Energy. 37, 6503-6510.
Wang, X., Huang, Y., Liu, C., Zhang, S., Wang, Y. and Piao, G. (2017) Dynamic volatilization behavior of Pb and Cd during fixed bed waste incineration: Effect of chlorine and calcium oxide. Fuel. 192, 1-9.
Zhang, H., He, P.J. and Shao, L.M. (2008) Fate of heavy metals during municipal solid waste incineration in Shanghai. J. Hazard. Mater. 156, 365-373.
Zhang, S., Song, Y., Song, Y.C., Yi, Q., Dong, L., Li, T.T., Zhang, L., Feng, F., Li, W.Y. and Li, C.Z. (2016) An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Part III: Effects of inorganic species in char on the reforming of tars from wood and agricultural wastes. Fuel. 183, 177-184.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊