[1] B. Fleet, H. Gunasingham, “Electrochemical sensors for monitoring environmental pollutants,” Talanta, 39(11), 1449-1457 (1992)
[2] D. S. Lee, J. K. Jung, J. W. Lim, J. S. Huh, D. D. Lee, “Recognition of volatile organic compounds using SnO2 sensor array and pattern recognition analysis,” Sens. Actuators B: Chem. 77, 228–236 (2001)
[3] A. K. M. Shafiqul Islam, Z. Ismail, M. N. Ahmad, B. Saad, A. R. Othman, A.Y. M. Shakaff, A. Daud, Z. Ishak, “Transient parameters of a coated quartz crystal microbalance sensor for the detection of volatile organic compounds (VOCs),” Sens. Actuators B: Chem. 109(2), 238–243 (2005)
[4] C. K. Ho, R. E. Lindgren, K.S. Rawlinson, L.K. McGrath, J.L. Wright, “Development of a surface acoustic wave sensor for in-situ monitoring of volatile organic compounds,” Sensors, 3, 236–247 (2003)
[5] C. Elosua, I. R. Matias, C. Bariain, F. J. Arregui, “Volatile organic compound optical fiber sensors: a review,” Sensors, 6, 1440-1465 (2006)
[6] C. McDonagh, C. Kolle, A. K. McEvoy, D. L. Dowling, A. A. Cafolla, S. J. Cullen, B. D. MacCraith, “Phase fluormetric dissolved oxygen sensor,” Sens. Actuators B, 74, 124-130 (2001)
[7] F. L. Dickert, A. Haunschild, P. Hofmann, “Cholesteric liquid crystals for solvent vapour detection — Elimination of cross sensitivity by band shape analysis and pattern recognition,” Fresenius. J. Anal. Chem, 577-581 (1994)
[8] C. K. Chang, S. W. Chiu, H. L. Kuo, K. T. Tang, “Optical detection of organic vapors using cholesteric liquid crystals,” Appl. Phys. Lett, 99, 073504 (2011)
[9] Y. Han, K. Pacheco, C. W. M. Bastiaansen, D. J. Broer, R. P. Sijbesma, “Optical Monitoring of Gases with Cholesteric Liquid Crystals,” J. Am. Chem. Soc., 132, 2961-6967 (2010)
[10] A. Saha, Y. Tanaka, Y. Han, C. M. W. Bastiaansen, D. J. Broer, R. P. Sijbesma, “Irreversible visual sensing of humidity using a cholesteric liquid crystal,” Chem. Commun., 48, 4579-4581 (2012)
[11] C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, J. F. Rabolt, “Controlling Surface Morphology of Electrospun Polystyrene Fibers: Effect of Humidity and Molecular Weight in the Electrospinning Process,” macromolecules, 37, 573-578 (2004)
[12] Z. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff, A. Greiner, “Compound core–shell polymer nanofibers by co‐electrospinning,” Adv. Mater. 15, 1929-1932 (2003)
[13] A. L. Yarin, “Coaxial electrospinning and emulsion electrospinning of core–shell fibers,” Polym. Advan. Technol. 22(3), 310-317 (2011)
[14] G. Taylor, “Disintegration of Water Drops in an Electric Field,” Proc. R. Soc. Lond A, 280(1382), 383–397 (1964)
[15] G. Taylor, “Electrically Driven Jets,” Proc. R. Soc. Lond A, 313(1515), 453–475 (1969)
[16] E. Simon, “NIH PHASE I FINAL REPORT: FIBROUS SUBSTRATES FOR CELL CULTURE,” ResearchGate, (1988)
[17] J. Doshi, D. H. Reneker, “Electrospinning process and applications of electrospun fibers,” J. Electrostatics, 35, 151-160 (1995)
[18] E. Enz, “Electrospun Polymer – Liquid Crystal Composite Fibres,” Martin Luther University of Halle-Wittenberg (2013)
[19] S. L. Shenoy, W. D. Bates, H. L. Frisch, G. E. Wnek, “Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit,” Polymer, 46(10), 3372-3384 (2005)
[20] C. X. Zhang, X. Y. Yuan, L. L. Wu, Y. Han, “Study on morphology of electrospun poly(vinyl alcohol) mats.” J. Sheng, Eur. Polym. J. 41, 423 (2005)
[21] M. M. Munir, A. B. Suryamas, Ferry Iskandar, K. Okuyama, “Scaling law on particle-to-fiber formation during electrospinning,” Polymer, 50(20), 4935-4943 (2009)
[22] Q. Yang, Z. Li, Y. Hong, Y. Zhao, S. Qiu, C. Wang, Y. Wei, “Influence of Solvents on the Formation of Ultrathin Uniform Poly(vinyl pyrrolidone) Nanofibers with Electrospinning,” J. Polym. Sci. Part B 42, 3721-3726 (2004)
[23] P. Gupta, C. Elkins, T. E. Long, G. L. Wilkes, “Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent,” Polymer, 46(13), 4799-4810 (2005)
[24] H. Fong, I. Chun, D. H. Reneker, “Beaded nanofibers formed during electrospinning,” Polymer, 40(16), 4585-4592 (1999)
[25] S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim, Z. Ma, “An introduction to electrospinning and nanofibers,” World Scientific Pub Co. Pte. Ltd (2005)
[26] C. Zhang, X. Yuan, L. Wu, Y. Han, J. Sheng, “Study on morphology of electrospun poly(vinyl alcohol) mats,” Eur. Polym. J, 41, 423-432 (2005)
[27] E. Enz, J. Lagerwall, “Electrospun microfibres with temperature sensitive iridescence from encapsulated cholesteric liquid crystal”, J. Mater. Chem. 20, 6866 (2010).
[28] 張祐豪, “單軸/同軸靜電紡絲製備具導電性PVP/Ag複合奈米纖維膜及物性分析之研究,” 國立台灣科技大學材料科學與工程研究所碩士論文 (2016)[29] R. Jalili, S. A. Hosseini, M. Morshed, “The Effects of Operating Parameters on the Morphology of Electrospun Polyacrilonitrile Nanofibres,” Iran. Polym. J. 14, 1074-1081 (2005)
[30] S. D. Vrieze, T. V. Camp, A. Nelvig, B. Hagstrom, P. Westbroek, K. D. Clerck, J. Mater, “The effect of temperature and humidity on electrospinning,” J. Mater. Sci. 44, 1357-1362 (2009)
[31] E. A. Buyuktanir, J. L. West, M. W. Frey, “Liquid crystal microfibers lead to responsive optoelectronic textiles,” SPIE Newsroom (2012)
[32] F. Reinitzer, “Beitrage zur kenntnis des cholesterins,” Monatsh. Chem. 9 421–441 (1888).
[33] J. Cooper, “Compositional Analysis of Merck E7 Liquid Crystal Intermediates Using UltraPerformance Convergence Chromatography (UPC2) with PDA Detection,” Waters Corporation, Manchester, UK (2013)
[34] D. J. Mulder, A. P. H. J. Schenning and C. W. M. Bastiaansen, “Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors,” J. Mater. Chem. C, 2, 6695–6705 (2014)
[35] SIGMA-ALDRICH, http://www.sigmaaldrich.com/catalog/product/aldrich/437190?lang=en®ion=TW
[36] C. K. Chang, S. W. Chiu, H. L. Kuo, K. T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100, 043501 (2012)