跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:45cf:c86b:e393:b18b) 您好!臺灣時間:2025/01/13 07:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林樺陽
研究生(外文):LIN, HUA-YANG
論文名稱:靜電紡絲膽固醇液晶氣體感測器之研究
論文名稱(外文):Study of Gas Sensor Based on Electrospun Cholesteric Liquid Crystal
指導教授:黃素真黃素真引用關係
指導教授(外文):HWANG, SHUG-JUNE
口試委員:許家榮林鈺城黃素真
口試委員(外文):SHEU, CHIA-RONGLIN, YU-CHENGHWANG, SHUG-JUNE
口試日期:2017-09-23
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:光電工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:61
中文關鍵詞:膽固醇液晶靜電紡絲氣體感測器
外文關鍵詞:cholesteric liquid crystalcoaxial electrospinninggas sensor
相關次數:
  • 被引用被引用:2
  • 點閱點閱:445
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是利用膽固醇液晶(cholesteric liquid crystal; CLC)同軸纖維來開發即時響應及能偵測多種類有機蒸氣之膽固醇液晶氣體感測元件,由於膽固醇液晶分子的週期性排列能反射特定波長,因此可藉由光線通過CLC纖維膜後之反射頻譜的變化來針對待測氣體分子進行量測與分析。首先利用同軸靜電紡絲技術來製作高分子物質與膽固醇液晶的複合型奈米纖維,並分別針對工業常見的溶劑:丙酮、丁酮來進行檢測;實驗中觀察不同的製程參數對於纖維結構的影響,且利用攝影機錄製偏光顯微鏡下的CLC纖維在有機氣體環境下的響應,並藉由其RGB與灰階來探討與分析CLC纖維在不同氣體環境下的反射光訊號變化情形。此外,亦分析該CLC纖維膜在有機氣體之擾動下的CLC分子平面排列(planar alignment)失效之反應時間。
In this thesis, the electrospun cholesteric liquid crystal (CLC) coaxial fiber was applied to develop a gas sensor with real-time detecting organic vapor. Because the periodic arrangement of cholesterol liquid crystal molecules can reflect a specific wavelength, so we can detect the gas molecules by means of measuring the change of the spectrum of the reflected light passing through the CLC fiber membrane. First, coaxial electrospinning technology was used to fabricate polymer and cholesterol liquid crystal composite nanofibers, and then the proposed fibers were applied to monitor the solvents of acetone and butanone respectively. The effects of different process parameters on the fiber structure were studied, and the dynamic response of the CLC fibers to the organic vapor was recorded by the camera under the polarized optical microscope. By analyzing the RGB and grayscale of the reflected light signal, the reaction of the CLC fibers to the organic molecules was investigated and analyzed. In addition, the response time of the CLC molecular from the planar alignment to disordered state under the disturbance of the organic gas was also studied.
致 謝 II
摘 要 III
Abstract IV
目錄 V
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 研究背景 1
1.2 研究方法 2
第二章 理論基礎 3
2.1 靜電紡絲簡介 3
2.1.1 溶液性質 4
2.1.2 操作參數 8
2.1.3 環境因素 11
2.1.4 同軸靜電紡絲 13
2.2 液晶簡介 14
2.2.1 液晶種類 14
2.2.2 膽固醇液晶的光學特性 17
2.3 膽固醇液晶氣體感測器技術 19
第三章 實驗方法與量測 22
3.1 實驗材料介紹 23
3.2 同軸靜電紡絲設備 24
3.3 同軸靜電紡絲製作 25
3.3.1 膽固醇液晶混合液配製 25
3.3.2 高分子PVP溶液配製 25
3.3.3 同軸靜電紡絲的製程 26
3.4 有機氣體檢測 27
3.4.1 偏光顯微鏡觀察 27
3.4.2 影像灰階與RGB處理 28
3.4.3 判定響應時間終點 29
第四章 實驗結果與討論 30
4.1 同軸靜電紡絲之製程參數探討 30
4.1.1 高分子溶液濃度與液晶流速 30
4.1.2 施加電壓 34
4.1.3 收集距離 36
4.2 膽固醇液晶氣體感測器特性分析 38
4.2.1 液晶纖維感測有機氣體時的偏光顯微鏡觀察 38
4.2.2 RGB &灰階分析 39
4.2.3 實驗穩定性檢測 40
4.2.4 有機氣體檢測 41
第五章 結論與未來展望 44
5.1 結論 44
5.2 未來展望 45
參考文獻 46

[1] B. Fleet, H. Gunasingham, “Electrochemical sensors for monitoring environmental pollutants,” Talanta, 39(11), 1449-1457 (1992)
[2] D. S. Lee, J. K. Jung, J. W. Lim, J. S. Huh, D. D. Lee, “Recognition of volatile organic compounds using SnO2 sensor array and pattern recognition analysis,” Sens. Actuators B: Chem. 77, 228–236 (2001)
[3] A. K. M. Shafiqul Islam, Z. Ismail, M. N. Ahmad, B. Saad, A. R. Othman, A.Y. M. Shakaff, A. Daud, Z. Ishak, “Transient parameters of a coated quartz crystal microbalance sensor for the detection of volatile organic compounds (VOCs),” Sens. Actuators B: Chem. 109(2), 238–243 (2005)
[4] C. K. Ho, R. E. Lindgren, K.S. Rawlinson, L.K. McGrath, J.L. Wright, “Development of a surface acoustic wave sensor for in-situ monitoring of volatile organic compounds,” Sensors, 3, 236–247 (2003)
[5] C. Elosua, I. R. Matias, C. Bariain, F. J. Arregui, “Volatile organic compound optical fiber sensors: a review,” Sensors, 6, 1440-1465 (2006)
[6] C. McDonagh, C. Kolle, A. K. McEvoy, D. L. Dowling, A. A. Cafolla, S. J. Cullen, B. D. MacCraith, “Phase fluormetric dissolved oxygen sensor,” Sens. Actuators B, 74, 124-130 (2001)
[7] F. L. Dickert, A. Haunschild, P. Hofmann, “Cholesteric liquid crystals for solvent vapour detection — Elimination of cross sensitivity by band shape analysis and pattern recognition,” Fresenius. J. Anal. Chem, 577-581 (1994)
[8] C. K. Chang, S. W. Chiu, H. L. Kuo, K. T. Tang, “Optical detection of organic vapors using cholesteric liquid crystals,” Appl. Phys. Lett, 99, 073504 (2011)
[9] Y. Han, K. Pacheco, C. W. M. Bastiaansen, D. J. Broer, R. P. Sijbesma, “Optical Monitoring of Gases with Cholesteric Liquid Crystals,” J. Am. Chem. Soc., 132, 2961-6967 (2010)
[10] A. Saha, Y. Tanaka, Y. Han, C. M. W. Bastiaansen, D. J. Broer, R. P. Sijbesma, “Irreversible visual sensing of humidity using a cholesteric liquid crystal,” Chem. Commun., 48, 4579-4581 (2012)
[11] C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, J. F. Rabolt, “Controlling Surface Morphology of Electrospun Polystyrene Fibers: Effect of Humidity and Molecular Weight in the Electrospinning Process,” macromolecules, 37, 573-578 (2004)
[12] Z. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff, A. Greiner, “Compound core–shell polymer nanofibers by co‐electrospinning,” Adv. Mater. 15, 1929-1932 (2003)
[13] A. L. Yarin, “Coaxial electrospinning and emulsion electrospinning of core–shell fibers,” Polym. Advan. Technol. 22(3), 310-317 (2011)
[14] G. Taylor, “Disintegration of Water Drops in an Electric Field,” Proc. R. Soc. Lond A, 280(1382), 383–397 (1964)
[15] G. Taylor, “Electrically Driven Jets,” Proc. R. Soc. Lond A, 313(1515), 453–475 (1969)
[16] E. Simon, “NIH PHASE I FINAL REPORT: FIBROUS SUBSTRATES FOR CELL CULTURE,” ResearchGate, (1988)
[17] J. Doshi, D. H. Reneker, “Electrospinning process and applications of electrospun fibers,” J. Electrostatics, 35, 151-160 (1995)
[18] E. Enz, “Electrospun Polymer – Liquid Crystal Composite Fibres,” Martin Luther University of Halle-Wittenberg (2013)
[19] S. L. Shenoy, W. D. Bates, H. L. Frisch, G. E. Wnek, “Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit,” Polymer, 46(10), 3372-3384 (2005)
[20] C. X. Zhang, X. Y. Yuan, L. L. Wu, Y. Han, “Study on morphology of electrospun poly(vinyl alcohol) mats.” J. Sheng, Eur. Polym. J. 41, 423 (2005)
[21] M. M. Munir, A. B. Suryamas, Ferry Iskandar, K. Okuyama, “Scaling law on particle-to-fiber formation during electrospinning,” Polymer, 50(20), 4935-4943 (2009)
[22] Q. Yang, Z. Li, Y. Hong, Y. Zhao, S. Qiu, C. Wang, Y. Wei, “Influence of Solvents on the Formation of Ultrathin Uniform Poly(vinyl pyrrolidone) Nanofibers with Electrospinning,” J. Polym. Sci. Part B 42, 3721-3726 (2004)
[23] P. Gupta, C. Elkins, T. E. Long, G. L. Wilkes, “Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent,” Polymer, 46(13), 4799-4810 (2005)
[24] H. Fong, I. Chun, D. H. Reneker, “Beaded nanofibers formed during electrospinning,” Polymer, 40(16), 4585-4592 (1999)
[25] S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim, Z. Ma, “An introduction to electrospinning and nanofibers,” World Scientific Pub Co. Pte. Ltd (2005)
[26] C. Zhang, X. Yuan, L. Wu, Y. Han, J. Sheng, “Study on morphology of electrospun poly(vinyl alcohol) mats,” Eur. Polym. J, 41, 423-432 (2005)
[27] E. Enz, J. Lagerwall, “Electrospun microfibres with temperature sensitive iridescence from encapsulated cholesteric liquid crystal”, J. Mater. Chem. 20, 6866 (2010).
[28] 張祐豪, “單軸/同軸靜電紡絲製備具導電性PVP/Ag複合奈米纖維膜及物性分析之研究,” 國立台灣科技大學材料科學與工程研究所碩士論文 (2016)
[29] R. Jalili, S. A. Hosseini, M. Morshed, “The Effects of Operating Parameters on the Morphology of Electrospun Polyacrilonitrile Nanofibres,” Iran. Polym. J. 14, 1074-1081 (2005)
[30] S. D. Vrieze, T. V. Camp, A. Nelvig, B. Hagstrom, P. Westbroek, K. D. Clerck, J. Mater, “The effect of temperature and humidity on electrospinning,” J. Mater. Sci. 44, 1357-1362 (2009)

[31] E. A. Buyuktanir, J. L. West, M. W. Frey, “Liquid crystal microfibers lead to responsive optoelectronic textiles,” SPIE Newsroom (2012)
[32] F. Reinitzer, “Beitrage zur kenntnis des cholesterins,” Monatsh. Chem. 9 421–441 (1888).
[33] J. Cooper, “Compositional Analysis of Merck E7 Liquid Crystal Intermediates Using UltraPerformance Convergence Chromatography (UPC2) with PDA Detection,” Waters Corporation, Manchester, UK (2013)
[34] D. J. Mulder, A. P. H. J. Schenning and C. W. M. Bastiaansen, “Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors,” J. Mater. Chem. C, 2, 6695–6705 (2014)
[35] SIGMA-ALDRICH, http://www.sigmaaldrich.com/catalog/product/aldrich/437190?lang=en®ion=TW
[36] C. K. Chang, S. W. Chiu, H. L. Kuo, K. T. Tang, “Cholesteric liquid crystal-carbon nanotube hybrid architectures for gas detection,” Appl. Phys. Lett. 100, 043501 (2012)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊