跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/04/02 02:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃羿誠
研究生(外文):HUANG, YI-CHENG
論文名稱:製作奈米結構於銅箔表面以增強拉曼散射
論文名稱(外文):Fabricating nanostructures on copper foil to enhance Raman scattering
指導教授:謝健謝健引用關係
指導教授(外文):SHIEH, JIANN
口試委員:柯宗憲賴宜生
口試委員(外文):KE, ZONG-XIANLAI, YI-SHENG
口試日期:2018-07-19
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:材料科學工程學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:71
中文關鍵詞:表面增強拉曼散射技術石墨烯奈米結構
外文關鍵詞:Surface enhanced Raman scatteringgraphenenanostructure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
拉曼光譜具有能快速檢測多種毒化物、不破壞樣品等優點,但拉曼散射本身訊號微弱,一般可利用試片表面的粗糙度,並沉積貴金屬(例如金、銀、銅等)在外在電場的作用下產生表面電漿共振現象以增強拉曼訊號,此技術稱之表面增強拉曼散射技術(SERS)。本論文基於對活性氧化與氣液固奈米線成長機制的瞭解,分別在銅箔和矽鍍上白金,透過熱處理超過共析溫度,開發出一種製作銅箔表面奈米結構的方法,此方法可結合具有大量生產高品質石墨烯的化學氣相沉積法,成長石墨烯於具有奈米結構的銅箔,製作出一種新穎的奈米複合結構。研究結果顯示,熱處理步驟、氣體組成、製程壓力與白金厚度是影響奈米結構形貌的因素。此外,我們以蒸鍍法成長銀奈米粒子於奈米結構基板,探討基板形貌與組成對拉曼散射的影響。相較於一般的銀奈米粒子基板,此一能彎曲的奈米結構基板可進一步提高拉曼訊號上百倍,其增強因子(EF)亦可達到108。
Raman spectroscopy has the advantages of being able to quickly detect multiple poisons without destroying the sample, but the Raman scattering itself has a weak signal. Generally, as the roughness of the surface of the test piece is utilized, and the precious metal (such as gold, silver, copper, etc.) is deposited in the external electric field, the surface plasma resonance phenomenon can be generated to enhance the Raman signal. This technique is called surface enhanced Raman scattering (SERS). Based on the understanding of the growth mechanism of active oxidation and vapor-liquid-solid growth for nanowires, here we develop a method to make nanostructure on copper foil surface by heating over the eutectoid temperature of copper and platinum. In combination with a chemical vapor deposition method for mass production of high-quality graphene, a graphene layer is also grown on a copper foil having a nanostructure to produce a novel nanocomposite structure. The results show that the heat treatment step, gas composition, process pressure and platinum thickness are factors that affect the morphology of the nanostructure. In addition, we have grown silver nanoparticles on the nanostructure substrate by vapor deposition to investigate the effect of substrate morphology and composition on Raman scattering. Compared with the general silver nanoparticle substrate, the composite nanostructure substrate can further increase the Raman signal by a hundred times and the enhancement factor (EF) can reach 108.
目錄
摘要 IV
Abstract V
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1前言 1
1.2 研究動機和目的 2
第二章 文獻回顧與理論 3
2.1 文獻回顧 3
2.2 拉曼散射 7
2.2.1散射 7
2.2.2 拉曼散射原理 8
2.2.3 Rhodamine 6G 拉曼光譜 13
2.3 石墨烯的製作 14
2.4 SERS增強原理 16
2.4.1物理增強機制 16
2.4.2化學增強機制 22
2.5石墨烯增强拉曼散射 23
2.6表面增強因子 25
第三章 實驗方法 26
3.1實驗步驟 26
3.1.1樣品清洗 26
3.1.2表面結構製成 27
3.1.3 熱蒸鍍金屬奈米粒子 28
3.1.4 樣品檢測 28
3.2實驗設備介紹 30
第四章 結果與討論 35
4.1表面形貌 35
4.1.1銅的表面形貌、奈米結構及接觸角 35
4.1.2 基板的R6G拉曼訊號 37
4.2奈米結構對拉曼散射的影響 40
第五章 結論與未來展望 57
參考文獻 58


[1] M. Fleischmann, P. J. Hendra and A. J. Mcquillan, Chemical Physics Letters. 2, 26(1974).
[2] 林鼎晸,“表面增強拉曼散射光譜的發展與應用”,工業材料雜誌,261,150 (2008)
[3] E. B. Barros and M. S. Dresselhaus. Phys. Rev. B. 90, 035443 (2014).
[4] X. Ling, L. Moura, G. P. A . Marcos and Z .Jin. J. Phys. Chem. C.116, 47, 25112 (2012).
[5] X. Liu, M. Huang, J. Chen, L. Kong and K. Wang, Laser Physics Letters(2018).
[6] P. Manikandan, D. Manikandan, E. Manikandan, A. Christy and Ferdinand, Spectrochimica Acta Part A. 124, 203 (2014).
[7] W. Xu, X. Ling and J. Xiao, PANS. 10, 1073 (2012).
[8] X. Ling, S. Huang, S. Deng, N. Mao, J. Kong, M. S. Dresselhaus and
J. Zhang, PANS. 10, 1021 (2015).
[9] A. Tao, F. Kim, C. N. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia and P. Yang, Nano Letters. 3, 9, 1229 (2003).
[10]蔡睿翰“二氧化鈦基表面增強拉曼基板之製作與檢測; TiO2基表面增強拉曼散射基底的製備與表徵”,國立中央大學 材料科學與工程研究所 (2011)
[11] B.K. Jena and C. R. Raj, Chem Mater. 20, 11, 3546 (2008).
[12] N. A. A. Hatab, J. M. Oran and M. J. Sepaniak, ACS Nano. 2, 2, 377 (2008).
[13] Y. J. Oh and K. H. Jeong, Advanced Materials. 17, 24, 2234 (2012).
[14] M. J. Banholzer, J. E. Millstone, L. Qin and C. A. Mirkin, Chemical Society Reviews. 37, 885 (2008) .
[15] K. Kneipp, H. Kneipp, R. Manoharan, E. B. Hanlon, I. Itzkan, R. R. Dasari and M. S. Feld, Applied Spectroscopy. 53, 1493 (1998).
[16] Z.Q. Tian, B. Ren and D.Y. Wu, Phys. Rev. B.106, 37, 9463 (2002).
[17] S. Nie and S. R. Emory, Science. 275, 1102 (1997).
[18] Y. He, S. Su,T. Xu, Y. Zhong, J. A. Zapien, J. Li, C. iFan and S. T. Lee, Nano Today. 2, 6, 122(2011).
[19] M. Becker, V. Sivakov, G. Andrä, R. Geiger, J. Schreiber, S. Hoffmann, J. Michler, A. P. Milenin, P. Werner, and S. H. Christiansen, Nano Lett. 7, 1, 75(2007).
[20] W. L. Zhai, D. W. Li, L. L. Qu, J. S. Fossey and Y. T. Long, Nanoscale. 4, 137 (2012).
[21] D. L. Andrews, IOP science. 8, 8 (2014).
[22]維基百科https://zh.wikipedia.org/zh-tw/拉曼光譜學
[23]李冠卿,“表面強化拉曼散射”,物理雙月刊5卷4期, P.185(1983)
[24] B. Petr and S. Andre.,Norwoo.511 (1987) .
[25] K. Clays and A. Persoons, Phys. Rev. Lett. 66, 29809 (1991).
[26]M. L. Seol, S. J. Choi, D. J. Beak, T. j. Park, J. H. Ahn, S. Y. Lee and Y. K. Choi, Nanotechnology. 111,13794 (2012).
[27] E. C. L. Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, J. Phys. Chem. C 111, 37, 13794 (2007).
[28] R. Pilot and R. Bozio, Raman Spectroscopy. 3, 49, 462 (2017).
[29] A. V. Girão, P. C. Pinheiro, M. Ferro and T. Trindade,. RSC Adv. 7, 15944 (2017).
[30] Y. Zhang, Y. Fu , M. Edwards, K. Jeppson, L. Ye and J. Liu, Materials Letters. 193, 255 (2017).
[31] X. Li, W. Cai, J. An, S. Kim, J. Nah, D.Yang, R.Piner, A.Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, Science. 324, 1312 (2009).
[32] D. L. Jeanmaire and R. P. V. Duyne, J. Electroanal. Chemistry. 1, 84 (1977).
[33] S. Nie and R. Emony, Science. 275, 1102 (1997.
[34] 吳民耀、劉威志,“表面電漿子理論與模擬”,物理雙月刊28卷二期P.491(2006)
[35] S. T. Kochuveedu and D. H. Kim, Nanoscale. 10, 1 (2014).
[36] A. Otto, Raman Spectroscopy. 36, 6, 497 (2005).
[37] N. Valley, N. Greeneltch, R. P. V. Duyne and G. C. Schatz , J. Phys. Chem. Lett. 4, 16, 2599 (2013).
[38] D. Y. Wu, J. F. Li, B. Ren and Z. Q. Tian, Chemical Society Reviews. 37, 1025 (2008).
[39] A. K. Geim and K. S. Novoselov, World Scientific, The rise of graphene (2010).
[40] T. C. Damen, S. P. S. Porto, and B. Tell, Physical Review Journals. 142, 570 (1966).

電子全文 電子全文(網際網路公開日期:20230912)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊