跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/15 02:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林建杰
研究生(外文):Lin, Chien-Chieh
論文名稱:以物理模型探討逆向坡傾倒變形與崩壞之研究
論文名稱(外文):Investigation of failure processes and characteristics of anaclinal slopes using physical models
指導教授:羅佳明羅佳明引用關係
指導教授(外文):Lo, Chia-Ming
口試委員:翁孟嘉王偉哲王承德許懷後羅佳明
口試委員(外文):Weng, Meng-ChiaWang, Wei-JerWang, Cheng-DerHsu, Huai-HouhLo, Chia-Ming
口試日期:2018-01-23
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:土木與防災工程學系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:108
中文關鍵詞:降雨坡趾泡水物理模型逆向坡
外文關鍵詞:physical modelanaclinal slopesslope toe Soakedrainfall
相關次數:
  • 被引用被引用:3
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
主要以降雨入滲及坡趾泡水弱化誘發邊坡失穩之物理模型試驗為主,針對岩體趾部泡水之崩壞過程與特性進行研究。藉由物理模型觀察每階段變形至破壞過程,並說明逆向坡(anaclinal slope)於不同坡趾泡水分布條件下之重力變形特性,並推估坡趾泡水影響逆向坡崩壞過程與特性。研究結果得知,坡趾泡水高低為邊坡發生變形破壞之關鍵。而逆向坡破壞機制截然不同,坡趾泡水高低劇烈影響岩層變形、崩壞速度,且加上坡體變形與坡頂張裂縫發展因素,致模型坡面產生破壞徵兆同時,利於地表水與坡趾泡水滲透,加速模型變形速度與潛在滑動面發展,隨即發生大規模滑動或傾翻破壞。此外,地層材料形狀的改變(圓球狀改三角柱狀),將影響降雨入滲速度,改變材料摩擦影響,導致模型變形、崩壞規模均有所不同之特性。
This study is physical models in an investigation, the deformation characteristics of anaclinal slopes that investigates into the slope toe Soaked distribution and changing the scale of the model, affect the deformation and failure characteristics of the anaclinal slopes. Through the physical models in the rainfall and slope toe Soaked distribution conditions test, observation of anaclinal slopes showed the deformation and collapse process of each stage, the experimental process is divided into four stages, used to explain the gravitational deformation characteristics of anaclinal slopes, reasonable to determine that rainfall and slope toe Soaked distribution influence of the collapse process sliding or toppling characteristics. The results of the study that slope toe Soaked distribution is a crucial factor in the deformation failure of anaclinal slopes, which will result in a significant reduction in rock mass shear strength, accelerating the rock mass of deformation, influence to the top of the slope development of tension cracks, which facilitates the infiltration of surface water and slope toe Soaked along of joint fissures the slope surface, leading to accelerated rock mass gravitational deformation and potential sliding surfaces development speed. Finally, physical models induced the occurrence of sliding or toppling failure.
目錄
摘要 2
Abstract 3
目錄 6
圖目錄 8
表目錄 11
第一章 緒論 12
1.1 研究動機與目的 12
1.1.1 動機 12
1.1.2 目的 13
1.2 研究流程及架構 14
第二章 文獻回顧 15
2.1 邊坡滑動與破壞之形式 15
2.1.1 邊坡破壞形式 15
2.1.2 塊體滑動的型式 16
2.2 逆向坡之相關研究 17
2.2.1 逆向坡之定義 17
2.2.2 逆向坡傾倒破壞 17
2.2.3 逆向坡崩壞機制 17
2.3 台灣落石坍方案例統整 19
2.4 降雨及地下水對邊坡穩定的影響 20
2.5 物理模型試驗之相關研究 21
第三章 研究方法 22
3.1 研究區現地調查成果與歸納 22
3.1.1 研究區地質概況 22
3.2 使用ArcMap 10.2與MATLAB程式調查研究區域 24
3.3 現地岩坡崩壞評估方法 27
3.3.1 Bieniawski岩體評分法-RMR法 27
3.3.2 現場岩坡評估 37
3.4 物理模型試驗 40
3.4.1 物理試驗儀器介紹 40
3.4.2 研磨石與膠結材料性質 41
3.4.3 研磨石形狀的關鍵 42
3.4.4 逆向坡模型組構介紹 43
3.5 坡趾透空體積比 44
3.6 物理模型試驗設計與項目 45
3.7 RMR法評分項目與物理模型比對如下: 47
3.7.1 圓球狀研磨石模型-RMR法評分(改自Bieniawski, 1979) 47
3.7.2 三角柱狀研磨石模型-RMR法評分(改自Bieniawski, 1979) 48
3.8 研究限制與初步假設 50
第四章 研究結果與討論 52
4.1 物理模型試驗結果 52
4.1.1 圓球狀研磨石模型 52
4.1.2 三角柱狀研磨石模型 61
第五章 綜合比較與研究限制 72
5.1 物理模型結果綜合比較 72
5.1.1 比較不同坡趾透空體積比 72
5.1.2 比較不同模型尺度(寬度) 75
5.1.3 比較有無趾部泡水試驗 77
5.1.4 比較不同岩層傾角試驗 79
5.1.5 比較有無坡趾透空試驗 82
5.1.6 比較不同坡面角度試驗 84
5.2 物理模型崩壞特性綜合比較 86
5.2.1 圓球狀研磨石之模型崩壞特性 86
5.2.2 三角柱狀研磨石之模型崩壞特性 88
5.3 現地比對與岩體評分(改自Bieniawski, 1979) 91
5.4 工程上建議 94
5.4.1 提出之整治工法 94
第六章 結論與建議 96
6.1 結論 96
6.2 建議 98
參考文獻 101


Alzo’ubi, A.K., (2015) “The Role of Block Ratio and Layer Thickness on Rock Slopes Movement Style"J. of GEOMATE, June, Vol. 8, No. 2 (Sl. No. 16), pp. 1271-1277, ISSN:2186-2982(P), 2186-2990(O), Japan.

Acharya, G., Cochrane, T.A. (2008) “Rainfall induced shallow landslides on sandy soil and impacts on sediment discharge: A flume based investigation"The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India, October.

Askarinejad, A., Laue, J., Zweidler, A., Iten, M., Bleiker, E., Buschor, H., Springman. S.M. (2012)“Physical modeling of rainfall induced landslides under controlled climatic conditions,"Eurofuge, Delft, The Netherlands, April 23-24.

Andreas Goricki, Richard, E., Goodman. (2003)“Failure Modes of Rock SlopesDemonstrated with Base Frictionand Simple Numerical Models"IC consulenten Ziviltechniker GesmbH, FELSBAU 21, NO. 2, pp.25-30.

Bieniawski, Z.T. (1973)“Engineering Classification of Rock Masses” The Civl Engineer in South Africa, Dec., pp. 335-343.

Bieniawski, Z.T. (1979) The geomechanics classification in rock engineering application. Proceedings Fourth Congress of the International Society for Rock Mechanics, vol. 2, pp. 41–48.

Bieniawski Z. T. (1984)“Rock Mechanics Design in Mining and Tunnelling” Balkema, Rotterdam. pp. 272.

Brückl, E., Brunner, F.K., Lang, E., Mertl, S., Müller, M., Stary, U. (2013) “Evaluating the role of groundwater in the stability of slopes in an open pit coal mine with shallow dipping multi-seam stratigraphy"Landslides, DOI 10.1007/s10346-013-0417-1.

Bates, R.L., Jackson, J.A. (1987) Glossary of Geology, Third Edition by R.L. Bates.

Chia-Ming Lo, Meng-Chia Weng. (2016)“Identification of deformation and failure characteristics in cataclinal slopes using physical modeling"Springer-Verlag Berlin Heidelberg, Landslides, DOI 10.1007/s10346-016-0735-1.

Fisher, Brendan R. (2009) Improved characterization and analysis of bi-planar dip slope failures to limit model and parameter uncertainty in the determination of setback distances, Doctor Thesis, Institute for Engineering Geology, British Columbia University.

Fausto Guzzetti, Silvia Peruccacci, Mauro Rossi. (2007) “Rainfall thresholds for the initiation of landslides in central and southern Europe" Meteorology and Atmospheric Physics, Vol. 98, Issue 3–4, pp 239–267.

Govind Acharya, (2011) “A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Civil Engineering in the University of Canterbury"Department of Civil and Natural Resources Engineering.

Goodman, R.E., and Bray, J.W. (1976)“Toppling of Rock Slopes” Proc. of Specialty Conference on Rock Engineering for Foundations and Slopes, Boulder Colorado, ASCE, Vol. 2, pp. 201-234.

Hoek, E., Bray, J.W. (1981). Rock Slope Engineering, Revised 3rd edition, The Institution of Mining and Metallurgy, London, pp. 257 - 270.

Harding, W., Connelly, R.J., Contreras, L.F. (2003) “Evaluating the role of groundwater in the stability of slopes in an open pit coal mine with shallow dipping multi-seam stratigraphy"Proceedings, 8th International Mine Water Association Congress, Johannesburg, In: INel, P. J. L, Mine Water and the Environment, pp. 249-264.

Henry Ling, and Hoe I. Ling, ASCE, M. (2012)“Centrifuge Model Simulations of Rainfall-Induced Slope Instability” J. Geotech. Geoenviron. Eng. 138, 1151-1157.

Jian-Ping SUN, Qing-Quan LIU, Jia-Chun LI, AN-Yi LI. (2009) “Effects of rainfall infiltration on deep slope failure"Sci China Ser, G-Phys Mech Astron, Jan, Vol. 52, No. 1, pp. 108-114.

Jiaoa, Jiu J., Xu-Sheng Wangb, Subhas Nandya. (2005)“Confined groundwater zone and slope instability in weathered igneous rocks in Hong Kong"Engineering Geology, Vol. 80, pp. 71-92.

Katsuo SASAHARA, Naoki SAKAI. (2012)“Stress-strain relation for early warning system against rainfall-induced landslide"The 3rd International Workshop on Multimodal Sediment Disasters - Challenge to Huge Sediment Disaster Mitigation, pp. D1.1-D1.7.

Moore, R.J., Bell, V.A. (2002) “Incorporation of groundwater losses and well level data in rainfallrunoff models illustrated using the PDM"Hydrology and Earth System Sciences, (6)1, pp.25-38, EGS.

O¨mer Aydan, Resat Ulusay, Naohiko Tokashiki. (2013) “New Rock Mass Quality Rating System: Rock Mass Quality Rating (RMQR) and Its Application to the Estimation of Geomechanical Characteristics of Rock Masses" Rock Mech Rock Eng, DOI 10.1007/s00603-013-0462-z.

Varnes, D.J., (1978)“Slope movement types and processes.; Landslides, Analysis and Control"In: Schuster, R. L.,and R. J.Krizek (Eds.),SpecialReport 176. National Academy of Science, Washington, DC, 11-33.

Vallet A, Bertrand C, Mudry J. (2013) “Effective rainfall: a significant parameter to improve understanding of deep-seated rainfall triggering landslide – a simple computation temperature based method applied to Séchilienne unstable slope (French Alps)"Hydrol. Earth Syst. Sci. Discuss., 10, pp. 8945–8991.

Ranjan kumar dahal, Shuichi hasegawa, Minoru yamanaka and Katsuhiro nishino. (2006) “Rainfall triggered flow-like landslides: Understanding from southern hills of Kathmandu, Nepal and Northern Shikoku, Japan"IAEG 2006, Vol. 819, Geological Society of London, pp. 1–14.

Rong-Her Chen, Kwo-Jane Kuo, Wei-Nan Chien. (2012) “FAILURE MECHANISM OF GRANULAR SOIL SLOPES UNDER HIGH INTENSITY RAINFALLS" Journal of GeoEngineering, Vol. 7, No. 1, pp. 021-031, April.

Ranjan Kumar Dahal, Shuichi Hasegawa, Atsuko Nonomura, Minoru Yamanaka, Takuro Masuda, Katsuhiro Nishino. (2017) “Failure characteristics of rainfall-induced shallow landslides in granitic terrains of Shikoku Island of Japan"Environmental Geology, 56(7):1295-1310, DOI:10.1007/s00254-008-1228-x.

Soddu, S., Delitala, G., Sciabica, M., Barrocu, G. (2003) “Modelling groundwater effects on slope stability"RMZ - Materils amd Geoenivronment, Vol. 50, No. 1, pp. 349-352.

Sasahara, K., Sakai N. (2011)“Shear Deformation Development and the Increase of Pore Pressure due to Rainfall Infiltration in Sandy Model Slope under Different Inclination"Int. J. of GEOMAT, Vol. 1, No.1 (Sl. No. 1), pp. 64-70, Oct.

Toyota, H. (2012) Characteristics of Slope Failures During Natural Disasters Considering Geographical Features and Groundwater Level: Case Study of the Chuetsu Region of Niigata, Japan. Geotechnical Engineering Journal of the SEAGS & AGSSEA, Vol. 43, No.2, June, ISSN 0046-5828.

Zhang a, J., Jiao b, J.J., Yang, J. (2000) “In situ rainfall infiltration studies at a hillside in Hubei Province, China" Engineering Geology, 57, pp. 31–38.

Zêzere, J.L., Trigo, R.M., Trigo, I.F. (2005) “Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation" Natural Hazards and Earth System Sciences, 5, pp. 331-344.

王金山、鍾明劍、冀樹勇(2011),「降雨誘發崩塌地滑動之監測回饋分析與預警應用探討」,中興工程季刊,第一百一十期,第27-40頁。

朱珍德、邢福東、王思敬、徐衛亞(2004),「地下水對泥板岩強度軟化的損傷力學分析」,岩石力學與工程學報,第二十三卷,增二期,第4739-4743頁。

何春蓀(1975),「臺灣地質概論」,中華民國經濟部,共118頁。

何春蓀(1986),「臺灣地質概論、臺灣地質圖說明書」,經濟部中央地質調查所,第2版,共164頁。

何信昌(1994),「五萬分之一苗栗地質圖幅」,經濟部中央地質調查所。

李明翰(2003),「岩坡傾倒破壞之研究-以台14線公路為例」,朝陽科技大學,碩士論文,營建工程系。

李維峰、張睦雄、董家鈞、劉桓吉顏召宜、梁樾、李三畏、廖洪鈞廖瑞堂、魏佳韻、賴盈如(2004),「山區道路邊坡崩塌防治工法最佳化研究(二)」,交通部科技顧問室委託研究計畫出版品。

吳進興、吳文隆、蕭秋安、周坤賢(2015),「極端氣候下公路邊坡災害復建 工程設計探討」,中華技術專題報導,第一百零五期,第160-173頁。

林鴻洲、于玉貞、李廣信、彭建兵(2009),「降雨特性對土質邊坡失穩的影響」,岩石力學與工程學報,第二十八卷,第一期,第198-204頁。

林錫宏、林銘郎、紀宗吉(2013),層間剪裂帶對大規模山崩及斜坡深層變形的影響探討,第十五屆大地工程研討會。

林建杰、陳韜羽、羅佳明(2017),「物理模型應用於降雨入滲及地下水分布引致逆向坡變形與崩壞之研究」,第十七屆大地工程學術研究討論會論文集,宜蘭,台灣。

林俐玲、黃振全、顏呈仰、黃貞凱、鄭裕適、張益通(2010),深層岩體潛移邊坡滑動行為研究─以廬山地滑為例,中華水土保持學報,42(1),第1-14頁。

林建杰、羅佳明(2016),「物理模型應用於逆向坡變形與崩壞過程與崩壞之初步研究」,土木水利,第四十三卷,第二期,第1-7頁。

陳肇夏、李錦發、王俊華(2000),「五萬分之一東勢地質圖」,經濟部中央地質調查所,圖幅第18號。

張國新、趙妍、彭校初(2007),「考慮岩橋斷裂的岩質邊坡傾倒破壞的流形元模擬」,岩石力學與工程學報,第二十六卷,第九期,第1773-1780 頁。

黃潤秋(2007),「20世紀以來中國的大型滑坡及其發生機制」,岩石力學與工程學報,第二十六捲,第三期,第433-454頁。

曾大仁(1998),「逆向岩盤邊坡翻倒破壞案例探討」,岩盤工程研討會87年年會論文集,新竹,第253-262 頁。

劉新榮、張梁、余瑜,劉坤(2013),「降雨條件下酉陽大涵邊坡滑動機制研究」,岩土力學,第三十四卷,第十期,第2898-2904頁。

鄭允、陳從新、劉婷婷、劉秀敏、宋婭芬、周意超(2015),「坡頂荷載作用下岩質邊坡傾倒破壞分析」,岩土力學學報,第三十六卷,第九期,第2639-2647 頁。

蔣良濰、黃潤秋(2006),「反傾層狀岩體斜坡彎曲-拉裂兩種失穩破壞之判據探討」,工程地質學報,第289-294頁。

潭儒蛟、楊旭朝、胡瑞林(2009),「反傾岩體邊坡變形機制與穩定性評價研究綜述」,岩土力學,第三十捲,增刊二,第479-484頁。

鍾明劍、譚志豪、冀樹勇、顧承宇、蘇泰維、李錦發、費立沅(2009),「松茂崩塌地降雨促崩潛勢評估與監測驗證」,2009 海峽兩岸地工技術/岩土工程交流研討會,台中,台灣。

顧承宇、冀樹勇、譚志豪(2011),「落石災害分析技術研究」,中興工程季刊,第一百一十二期,第91-96頁。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top