(3.236.100.6) 您好!臺灣時間:2021/04/24 00:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳東龍
研究生(外文):WU, TUNG-LUNG
論文名稱:不同光電極結構染料敏化太陽能電池的製作及應用
論文名稱(外文):Fabrication and Application of Dye-Sensitized Solar Cells with Different Structures of Photo Electrodes
指導教授:姬梁文姬梁文引用關係閔庭輝
指導教授(外文):JI, LIANG-WENMEEN, TEEN-HANG
口試委員:姬梁文閔庭輝水瑞鐏劉代山張守進林建德
口試委員(外文):JI, LIANG-WENMEEN, TEEN-HANGWALTER WATERLIU, DAY-SHANCHANG, SHOOU-JINNLIN, CHIEN-TE
口試日期:2018-06-27
學位類別:博士
校院名稱:國立虎尾科技大學
系所名稱:光電工程系光電與材料科技博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:73
中文關鍵詞:染料敏化太陽能電池超級電容奈米管
外文關鍵詞:DSSCsupercapacitornanotube
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以二種方法製作染料敏化太陽能電池(DSSC)及製作一個與電池結合的整合型元件。第一種是以電化學陽極處理方式在鈦片上製備二氧化鈦(TiO2)奈米管陣列,利用定電壓法及時間控制成長不同奈米管長,生長完成後使用過氧化氫(H2O2)將二氧化鈦奈米管陣列從鈦片分離,再以聚乙二醇及二氧化鈦混合成的膠態黏至FTO玻璃上,傳統方法是以在鈦片上成長二氧化鈦奈米管並製成染料敏化太陽能電池,並探討在不同管長下對DSSC的影響。使用場發射掃描式電子顯微鏡(FE-SEM)分析發現,在陽極處理 2、3、4小時,所生長出來的奈米管長度分別為15 μm、21 μm、28 μm,平均直徑約為145 nm,平均生長速率為7μm/ h,製出來DSSC效率分別為4.81 %、5.07 %、4.85 %,我們在這之中發現隨著二氧化鈦奈米管長由15μm增加至28μm,電池的短路電流密度也從11.37 mA/cm2增加至12.33 mA/cm2,但是光電轉換效率卻沒有因為短路電流密度的提升而增加,其原因則是因為較長管長會導致電解液內的I3-無法完全擴散,才導致效率下降,由光電轉換效率(IPCE)得知。第二種在ITO/PEN塑膠基板上以水熱法成長稀疏氧化鋅微米柱,並且在這中間使用刮刀法將氧化鋅奈米粒子填入其中形成複合式電極並且加壓至418.8 Kg/cm2,並以單純氧化鋅奈米粒子加壓前後來比較效率,這三種結構厚度分別為氧化鋅奈米粒子33.2 μm,加壓過後的氧化鋅奈米粒子34.2 μm,氧化鋅微米柱複合電極33.1 μm,製出來DSSC效率分別為2.21 %、2.90 %、3.46 %,結果顯示複合式電極可提升其效率,主要是因為複合式電極裡的微米柱可增加光的散射層及光電子快速傳輸路徑。第三種製作複合型超級電容之碳電極,並與染料敏化太陽能電池進行整合成獨立綜合能源元件系統,超級電容則以參雜木質活性碳與氧化鋅奈米粒子組合而成的,我們整合而成的元件進行串並連,並且成功的點亮LED。
In this study, the dye-sensitized solar cells (DSSC) photoelectrodes were fabricated in two ways, and an integrated component integrated with the battery was fabricated. The first method was to prepare a titanium dioxide (TiO2) nanotube array on a titanium sheet by electrochemical anodizing, and to grow different nanotube lengths by constant voltage method and time control. After the growth was completed, hydrogen peroxide (H2O2) was used to treat the TiO2 nanotube. The tube array was separated from the titanium sheet and adhered to the FTO glass by a mixture of polyethylene glycol and TiO2. The conventional method was to grow a TiO2 nanotube on the titanium sheet and prepare a dye-sensitized solar cell and explore the difference. The influence of the governor on DSSC. Using field emission scanning electron microscopy (FE-SEM) analysis, it was found that the length of the nanotubes grown at 2, 3, and 4 hours was 15 μm, 21 μm, and 28 μm, and the average diameter was about 145 nm. The average growth rate was 7 μm/h, and the DSSC efficiencies are 4.81 %, 5.07 %, and 4.85 %, respectively. We found that the cells short-circuit current density also increased from 11.37 as the TiO2 nanotube length increased from 15μm to 28μm. mA/cm2 was increased to 12.33 mA/cm2, but the photoelectric conversion efficiency did not increase due to the increase in the short-circuit current density. The reason is that the longer tube length causes the I3- in the electrolyte to not completely diffuse, resulting in a decrease in efficiency. Known by photoelectric conversion efficiency (IPCE). The second method was to hydrothermally grow a sparse zinc oxide micro-column on an ITO/PEN plastic substrate, and a zinc oxide (ZnO) nanoparticle was filled therein by using a doctor blade method to form a composite electrode and pressurized to 418.8 Kg/cm2. The efficiency was compared before and after the simple oxidation of ZnO nanoparticles. The thickness of the three structures was 33.2 μm for ZnO nanoparticles, 34.2 μm for ZnO nanoparticles after pressing, and 33.1 μm for ZnO microcolumn composite electrodes. The DSSC efficiency was 2.21%, 2.90%, and 3.46%, respectively. The results show that the composite electrode can improve its efficiency, mainly because the micro-pillar in the composite electrode can increase the light scattering layer and the photoelectron fast transmission path. The third was to make a carbon electrode of a composite supercapacitor and integrate it with a dye-sensitized solar cell into a separate integrated energy component system. The supercapacitor is a combination of mixed wood activated carbon and zinc oxide nanoparticle. We integrate the resulting components are connected in series and successfully illuminate the LED.
摘要..........i
Abstract..........iii
誌謝..........v
目錄..........vi
表目錄..........xi
圖目錄..........xii
第一章 序論..........1
1-1 前言..........1
1-2 研究動機與目的..........1
第二章 理論原理與文獻回顧..........6
2-1 二氧化鈦..........6
2-1-1 二氧化鈦特性..........6
2-1-2 陽極處理與奈米管的形成機制..........7
2-1-3 極化現象..........9
2-2 氧化鋅..........10
2-2-1 氧化鋅的基本特性..........10
2-2-2 氧化鋅奈米柱成長機制 ..........11
2-3 染料敏化太陽能電池..........11
2-3-1 染料敏化太陽能電池的簡介與發展..........11
2-3-2 染料敏化太陽能電池的結構..........12
2-3-3 染料敏化太陽能電池的工作原理 ..........14
2-3-4 染料敏化太陽能電池電壓-電流量測特性..........15
2-4 超級電容..........16
2-4-1 超級電容材料之簡介..........16
2-4-2 超級電容結構..........17
2-4-3 超級電容工作原理..........19
2-4-4 平行板電容器及電化學特性..........20
2-4-5 電化學電容器之電容測定方法..........20
2-5 奈米粒子與奈米柱複合結構文獻回顧..........24
2-6 超級電容器文獻探討..........26
第三章 實驗步驟..........28
3-1 實驗藥品與實驗設備..........28
3-1-1 實驗藥品..........28
3-1-2 實驗儀器設備..........30
3-2 二氧化鈦奈米管陣列料敏化太陽能電池..........31
3-2-1 實驗流程圖..........31
3-2-2 二氧化鈦奈米管製備..........31
3-3 氧化鋅微米柱染料敏化太陽能電池..........33
3-3-1 實驗流程圖..........33
3-3-2 氧化鋅微米柱製備..........33
3-4 染料敏化太陽能電池製備..........34
3-4-1 刮刀塗佈法製備光電極..........34
3-4-2 白金背電極製備..........34
3-4-3 染料與電解液的製備..........34
3-4-5 元件封裝..........35
3-5 超級電容及整合元件製備..........36
3-5-1 實驗流程圖..........36
3-5-2 基板清洗..........36
3-5-3 氧化鋅奈米粒子碳膏調配..........36
3-5-4 製備碳電極..........37
3-5-5 電極薄膜製程參數..........37
3-5-6 整合型元件之製備..........38
3-6 分析儀器應用原理..........40
3-6-1 場發射式掃描式電子顯微鏡..........40
3-6-2 X光繞射儀..........40
3-6-3 紫外光-可見光吸收光譜儀..........41
3-6-4 電化學交流阻抗..........42
3-6-5 全波段入射光子轉換效率量測..........44
3-6-6 電化學特性分析..........45
3-6-7 循環伏安分析..........46
3-6-8 恆電流充放電效率測試..........46
第四章 結果與討論..........47
4-1 二氧化鈦奈米管製成正照光染料敏化太陽能電池分析..........47
4-1-1 二氧化鈦奈米管XRD分析..........47
4-1-2 二氧化鈦奈米管及轉移FTO導電玻璃基板SEM圖形分析..........48
4-1-3 二氧化鈦奈米管紫外光-可吸收光譜分析..........49
4-1-4 二氧化鈦奈米管正照光染料敏化太陽能電池IPCE分析..........50
4-1-5 二氧化鈦奈米管染料敏化太陽能電池正照光與背照光I-V分析..........51
4-1-6 EIS分析..........52
4-2 氧化鋅微米柱製作成染料敏化太陽能電池分析..........53
4-2-1 氧化鋅微米柱分析..........53
4-2-2 氧化鋅奈米粒子及複合電極SEM分析..........54
4-2-3 染料敏化太陽能電池效率分析..........56
4-2-4 交流阻抗分析EIS 與IPCE量測..........57
4-3 染料敏化太陽能電池與超級電容組合而成元件..........60
4-3-1 添加不同的木質活性碳SEM分析..........60
4-3-2 循環伏安分析及恆電流充放電測試..........60
4-3-2 整合型元件電池之效率分析..........62
4-3-3 整合元件分析與應用..........63
4-3-4 整合元件超級電容充放電應用..........63
第五章 結論..........65
參考文獻..........66
Extended Abstract..........69


[1] 張正華, 李陵嵐, 業楚平, 楊平華,“有機與塑膠太陽能電池”(2008)
[2] 翁敏航,“太陽能電池:原理、元件、材料、製程與檢測技術”東華書局, (2010).
[3] German Advisory Council on Global Change, 2003 “World in transition: turning energy systems towards sustainability”.
[4] R. Kojima, Y. Kimura and J. Liu et al., Journal of Electrochemical Science and Technology, 07,01, 52-57 (2016).
[5] V. Thavasi, V. Renugopalakrishnan and R. Jose et al., Materials Science and Engineering: R: Reports, 63, 81(2009).
[6] M. Law, L. E. Greene and J. C. Johnson et al., Nature Materials, 4, 455 (2005).
[7]M. Selvakumar, D.K. Bhat and A.M. Aggarwal et al., Phys. B, 405, 2286 (2010).
[8]L.S. Aravindaa, K.K. Nagarajab and H.S. Nagarajab et al., Electrochim. Acta, 95, 119 (2013).
[9]Y. Zhang, X. Sun and L. Pan et al., Solid State lonics, 180, 1525 (2009).
[10]D. Kalpana, K.S. Omkumar and S.S. Kumar et al., Electrochim. Acta, 52, 1309 (2006).
[11] M.A. Fox and M.T. Dulay, Chemical Reviews, 93, 341 (1993).
[12] K. Nagaveni, M. S. Hegde and N. Ravishankar et al., Langmuir, 20, 2900(2004).
[13] 張昭賢,2003,”鈦電極工學”,冶金工業出版社,頁1~69
[14]T. Ohtsuka and N. Nomura, Corros. Sci., 39, 1253 (1997)
[15]Y. T. Sul, C. B. Johansson and S. Petronis et al., Biomaterials, 23, 491 (2002).
[16]D. J. Blackwood, L. M. Peter and D. E. Williams, Electrochimica Acta, 33, 8, 1143 (1988).
[17]J. M. Maca’k, Hiroaki Tsuchiya and Andrej Ghicov et al., Electrochemistry Communications 7, 1133 (2005).
[18]C. Ruan, M. Paulose and O. K. Varghese et al., Solar Energy Materials and Solar Cells, 90, 1283 (2006).
[19]J. Zhao, X. Wang and R. Chen et al., Solid State Communications, 134, 705 (2005).
[20]Andrei Ghicov, Jan M. Macak , Hiroaki Tsuchiya et al., Chemical Physics Letters, 419, 426 (2006).
[21]I. Sanghi and S. Visvanathan, Electrochim Acta, 7, 567 (1962).
[22]L. D. Arsov, C. Kormann and W. Plieth, The Electrochemical Society, 138, 10, 2964, (1991).
[23]楊于紹, 陽極氧化法製備奈米二氧化鈦薄膜之研究, 國立中興大學材料工程研究所碩士論文, 2003
[24]G. K. Mor, O. K. Varghese and M. Paulose et al., Solar Energy Materials and Solar Cells, 90, 14, 2011-2075 (2006).
[25]K.S. Raja, M. Misra and K. Paramguru, Electrochimica Acta, 51, 154 (2005).
[26]張智信, 陽極處理法製備二氧化鈦奈米管狀結構並應用於染料敏化太陽能電池之研究, 國立台北科技大學材料科學與工程研究所碩士論文, 2008.
[27] S. Kohiki, M. Nishitani, and T. Wada., J. Appl. Phys., 75, 2069, (1994).
[28] D.C Kim, W.S Han, B-H Kong and H-K Cho et al., Physica B, 401, 386 (2007).
[29] http://en.wikipedia.org/wiki/Zinc_oxide
[30] Z. Li, X. Huang and J. Liu et al., Materials Letters, 62, 1503 (2008).
[31]H. Tsubomura, M. Matsumura and Y. Nomura et al., Nature, 261, 402 (1979).
[32]O'Regan, B.; Gratzel, M. Nature , 353, 737(1991).
[33]M. K. Nazeeruddin, F. D. Angelis and S. Fantacci et al., 73J. Am. Chem. Soc., 127, 16835, (2005).
[34] 中華民國經濟部能源局,2010能源產業白皮書2010
[35] T. Ma, M. Akiyama and E. Abe et al., Nano Lett., vol. 5, pp. 2543-2547 (2005).
[36] M. H. Yang,“太陽電池用透明導電膜材料”工業材料雜誌265期
[37] M. K. Nazeeruddin, S. M. Zakeeruddin and R. Humphry-Baker et al., Inorg. Chem., 38, 6298(1999).
[38] Md. K. Nazeeruddin, M. Amirnasr and P. Comte et al., Langmuir, 16, 8525 (2000).
[39] K. S. Finnie, J. R. Bartlett and J. L. Woolfrey, Langmuir, 14, 2744 (1998).
[40] M. K. Nazeeruddin, P.Pechy and T.Renouard et al., Journal of the American Chemical Society , 123,1613(2001).
[41] W. U. Huynh, J. J. Dittmer and A. P. Alivisatos et al., Science, 295, 2425 (2002).
[42] H. Usui, H. Matsui and N. Tanabe et al., Journal of Photochemistry and Photobiology a-Chemistry, 164, 97 (2004).
[43] S. A. Sapp, C. M. Elliott and C. Contado et al., J. Am. Chem. Soc., 124, 11215, (2002).
[44] Szu-Po Huang,“氧化鋅奈米柱與二氧化鈦之混合結構在染料感光型太陽能電池光陽極之應用”(2010).
[45]R. Katoh, A. Furube and T. Yoshihara et al., J. Phys. Chem. B, 108, 4818, (2004).
[46]M. Grätzel, J. Photochem. Photobio. A: Chem., 164, 3(2004).
[47]Y. Wang, Z. Shi and Y. Huang et al., J. Phys. Chem. C, 113, 13103-13107 (2009).
[48]X. Du, P. Guo and H. Song et al., Electrochim. Acta, 55, 4812-4819 (2010).
[49]D. N. Futaba, K. Hata and T. Yamada et al., Nat. Mater., 5, 987 (2006).
[50]L. Hu, M. Pasta and F. L. Mantia et al., Nano Lett., 10, 708 (2010).
[51] 鄧梅根”電化學電 容器店及材料研究”,中國科學技術大學出版社 (2009)
[52] I. Tanahashi, A. Yoshida and A. Nishino, Carbon, 28, 477-482 (1990)
[53]M. Ue, K. Ida and S. Mori., 1994,, J. Electrochem Soc., 141, 11, 2989-2996 (1994).
[54]M. Pham, P. Adet and G.Velasco., Appl. Phys. Lett., 48, 1348-1350 (1986).
[55]R. Xue and I. Chen, Solid State Ion., 18-19, 1134-1137 (1986).
[56]C. H. Hamann, A. Hamnett and W. Vielstich, Electrochemistry, Wiley-Vch, New York (1998).
[57] Vzwilling, M Aucouturier and EDarque-Cerettia, Electrochimica Acta, 45, 6 (1999)
[58] P. Sivaraman, V.R. Hande and V.S. Mishra et al., Journal of Power Sources, 124, 351–354 (2003)
[59] C. Yuan, X. Zhang and Q. Wu et al., Solid State Ionics, 177, 1237-1242 (2006)
[60] S. Sun, J. Song, Z. Shan et al., Journal of Electroanalytical Chemistry, 676, 1-5 (2012)
[61]呂宗昕,圖解奈米科技與光觸媒,商周出版 (2003).
[62]林政偉,國立成功大學光電科學與工程研究所碩士論文 (2004)
[63]陳政廷,“混合有機色素分子共增感對色素增感太陽電池光電轉換效率的影響”(2008)
[64] M. Adachi, M. Sakamoto and J. Jiu et al., J. Phys. Chem. B, 110, 13872-13880(2006).
[65]劉建惟、薛漢鼎,“太陽能電池檢測技術”,電子月刊, 162期,頁167~181 (2009) [66]張溏芸,2014,“金奈米粒子鑲埋於染料敏化太陽能電池光電極之研究” ,國立虎尾科技大學電子工程系碩士論文。
[67]卓奕廷,2012, “雙開孔二氧化鈦奈米管陣列應用於正照光式染料敏化太陽能電池之研究”,國立虎尾科技大學電子工程系碩士論文。
[68] 施力綺,2015,“氧化鋅複合式奈米結構應用於可撓式染料敏化太陽能電池” ,國立虎尾科技大學電子工程系碩士論文。
[69] 李金翰,2017,“染料敏化太陽能電池與超級電容之整合型元件之研究” 國立虎尾科技大學電子工程系碩士論文。

電子全文 電子全文(網際網路公開日期:20230711)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔