跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/23 19:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊福海
研究生(外文):YANG, FU-HAI
論文名稱:氧化鎂錫薄膜之光電特性研究
論文名稱(外文):Studies on the Photoelectric Properties of Magnesium Tin Oxides Thin Films
指導教授:蔡木村
指導教授(外文):TSAI, MU-TSUN
口試委員:張益新張莉毓
口試委員(外文):CHANG, YEE-SHINTEOH, LAY-GAIK
口試日期:2018-07-23
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:材料科學與工程系材料科學與綠色能源工程碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:113
中文關鍵詞:溶膠–凝膠旋轉塗佈法氧化鎂錫螢光薄膜
外文關鍵詞:Sol–gel methodspin coatingMgO/SnO2phosphor film
相關次數:
  • 被引用被引用:1
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以溶膠-凝膠法及旋轉塗佈法製備氧化鎂錫(MgO/SnO2)薄膜,並探討電解質、摻雜劑、塗佈層數及燒結溫度對其結構、微結構與光電特性之影響。
未摻雜及摻雜錳、鈦之薄膜經燒結400~600oC後均可形成氧化鎂錫(MgO/SnO2)複合相,電解質及摻雜金屬離子可改善薄膜的對偶氮染料AO7之降解效率及光電特性;經燒結800oC後開始形成錫酸鎂(Mg2SnO4)結構,於1200oC燒結後為Mg2SnO4結晶及殘留微量SnO2相。經UV光照射後,摻雜錳之薄膜於波長500 nm有明顯之放射峰,摻雜鈦之試片放射波峰為440 nm,具有綠藍光放射特性。摻雜活化劑濃度及塗佈層數會影響薄膜之表面型態及發光特性。

In this study, MgO/SnO2 films were synthesized by the sol–gel and spin coating. The effects of electrolyte, various dopant species and contents, coating layers, and sintering temperatures on the structure, microstructure and photoelectric properties were investigated.
The MgO/SnO2 composite films were formed after annealing at 400-600oC. It was observed that proper electrolyte concentration and sintering condition could improve the degradation efficiency of azo dyes AO7 and photoelectric conversion efficiency.
After annealing at 800oC, the films began to form Mg2SnO4 structure. On annealing at 1200oC, Mg2SnO4 is the main crystalline phase with small trace of SnO2. Under UV excitation, Mn- and Ti-doped phosphor showed emission bands centering at 500 nm (green) and 440 nm (blue), respectively. Different concentrations of activators and coating layers affected the surface morphology and luminescence of films.

摘要 ...i
Abstract ...ii
誌謝 ...iii
目錄 ...iv
表目錄 ...viii
圖目錄 ...x
第一章 緒論 ...1
1.1 前言 ...1
1.2 研究動機 ...2
第二章 基礎理論及文獻回顧 ...3
2.1 氧化鎂、氧化錫及錫酸鎂 ...3
2.1.1晶體結構 ...3
2.1.2 特性與應用 ...3
2.2光觸媒特性 ...4
2.2.1偶氮染料 ...4
2.2.2 Langmuir-Hinshelwood動力學方程式 ...5
2.2.3影響光催化效率之因素 ...6
2.3 螢光材料之特性 ...13
2.3.1 螢光材料組成 ...13
2.3.2 Mg2SnO4之發光機制 ...13
2.3.3 史托克位移 ...13
2.3.4 影響螢光材料之發光效率因素: ...14
2.3.4.1 主體晶格效應 ...14
2.3.4.2 缺陷效應 ...14
2.3.4.3 熱淬滅 ...15
2.3.4.4 濃度淬滅效應 ...15
2.4 溶膠–凝膠法 ...20
2.5 研究目的 ...23
第三章 實驗方法與步驟 ...24
3.1 實驗流程 ...24
3.2 分析儀器與原理介紹 ...26
3.2.1 結構分析 ...26
3.2.1.1 熱重分析/熱差掃描量熱分析 (TGA/DSC) ...26
3.2.1.2 X光繞射分析儀 (X-ray diffraction, XRD) ...26
3.2.1.3 拉曼光譜儀 (Raman Spectroscopy) ...26
3.2.2 微結構分析 ...27
3.2.2.1掃描式電子顯微鏡 ( Scanning Electron Microscopy, SEM) ...27
3.2.2.2 場發射穿透式電子顯微鏡 (FE-TEM) ...27
3.2.2.3 原子力顯微鏡 (AFM) ...27
3.2.3 物理性質分析 ...28
3.2.3.1 恆溫吸附儀 (BET) ...28
3.2.3.2 電子順磁共振光譜儀(Electron Paramagnetic Resonance Spectrometer, EPR) ...28
3.2.4 光學性質分析 ...29
3.2.4.1 光催化反應 ...29
3.2.4.3 紫外光/可見光光譜儀(UV-Vis) ...29
3.2.4.4 螢光光譜儀(Fluorescence spectrophotometer, PL) ...30
第四章 結果與討論 ...37
4.1 溶膠–凝膠反應 ...37
4.2 XRD繞射與結晶性分析 ...40
4.3 熱重分析與熱示差掃描分析 ...49
4.4 Raman光譜分析 ...49
4.5 SEM分析 ...56
4.6 TEM分析 ...65
4.7 AFM分析 ...65
4.8 BET分析 ...71
4.9 EPR分析 ...76
4.10 光催化 ...79
4.11 UV-Vis分析 ...83
4.12 PL分析 ...87
第五章 結論 ...101
參考文獻 ...102
Extended Abstract ...109

[1]A. Fujishima and K. Honda, 1972, “Electrochemical photocatalysis of water at a semiconductor electrode”, Nature, 238, 37‐38.
[2]L. Peng, Y. Wang, Z. Wang, 2011, “Multiplesite structure and photoluminescence properties of Eu3+ doped MgO nanocrystals”, Applied Physics A, 102, 387–392.
[3]H. Li, M. Li, X. Wang, X. Wu, F. Liu, B. Yang, 2013, “Synthesis and optical properties of single-crystal MgO nanobelts”, Materials Letters, 102-103, 80-82.
[4]R. Sathyamoorthy, K. Mageshwari, S. S. Mali, S. Priyadharshini, P. S. Patil, 2013, “Effect of organic capping agent on the photocatalytic activity of MgO nanoflakes obtained by thermal decomposition route”, Ceramics International, 39, 323-330.
[5]S. H.C.Liang, I. D.Gay, 1986, “A 13C Solid-State NMR Study of the Chemisorption and Decomposition of Ethanol on MgO”, Journal of Catalysis, 101, 293-300.
[6] N. Clament Sagaya Selvam, R. Thinesh Kumar, L. John Kennedy, J. Judith Vijaya, 2011, “Comparative study of microwave and conventional methods for the preparation and optical properties of novel MgO-micro and nano-structures”, Journal of Alloys and Compounds, 509, 9809–9815.
[7]S. Klubnuan, P. Amornpitoksuk, S. Suwanboon, 2015, “Structural, optical and photocatalytic properties of MgO/ZnO nanocomposites prepared by a hydrothermal method”, Materials Science in Semiconductor Processing, 39, 515-520.
[8]S. Li, Z. Chen, T. Li, Q. Jiang, Y. Wang, W. Zhang, 2014, “Electrophoretic deposition of crack-free magnesium oxide-coated tin oxide film and its application in dye-sensitized solar cells”, Electrochimica Acta, 133, 275-282.
[9]T. Selvamani, T. Yagyu, S. Kawasaki, I. Mukhopadhyay, 2010, “Easy and effective synthesis of micrometer-sized rectangular MgO sheets with very high catalytic activity”, Catalysis Communications, 11, 537-541.
[10]M. Sangeeta, K.V. Karthik, R. Ravishankar, K.S. Anantharaju, H. Nagabhushana, K. Jeetendra, Y.S.Vidya, L.Renuka, 2017, “Synthesis of ZnO, MgO and ZnO/MgO by Solution Combustion Method: Characterization and Photocatalytic Studies”, Materials Today: Proceedings, 4, 11791-11798.
[11]A. Mashayekh-Salehi, G. Moussavi, K. Yaghmaeian, 2017, “Preparation, characterization and catalytic activity of a novel mesoporous nanocrystalline MgO nanoparticle for ozonation of acetaminophen as an emerging water contaminant”, Chemical Engineering Journal, 310, 157-169.
[12]K. Ahmed, M. Rabah, M. Khaled, B. Mohamed, M. Mokhtar, 2016, “Optical and structural properties of Mn doped MgO powders synthesized by Sol-gel process”, Optik, 127, 8253–8258.
[13]M. Sorescu, L. Diamandescu, D. Tarabasanu-Mihaila, V. S. Teodorescu, B. H. Howard, 2004, “Hydrothermal synthesis and structural characterization of (1 - x)α-Fe2O3–xSnO2 nanoparticles”, Journal of Physics and Chemistry of Solids, 65, 1021-1029.
[14]M.D. Stoev, J. Touskova, J. Tousek, 1997, “X-ray photoelectron spectroscopy, scanning electron microscopy and optical transmittance studies of indium tin oxide and cadmium sulphide thin films for solar cells”, Thin Solid Films, 299, 67-71.
[15]X. Li, T. A. Gessert, T. Coutts, 2004, “The properties of cadmium tin oxide thin-film compounds prepared by linear combinatorial synthesis”, Applied Surface Science, 223, 138-143.
[16]R. S. Niranjan, Y. K. Hwang, D. K. Kim, S.H. Jhung, J.-S. Chang, I.S. Mulla, 2005, “Nanostructured tin oxide: Synthesis and gas-sensing properties”, Materials Chemistry and Physics, 92, 384-388.
[17]G. Zhang, M. Liu, 2000, “Effect of particle size and dopant on properties of SnO2 –based gas sensors”, Sensors and Actuators B: Chemical, 69, 144-152.
[18]A. Cabot, A. Die´guez, A. Romano-Rodrı´guez, J. R. Morante, N. Baˆrsan, 2001, “Influence of the catalytic introduction procedure on the nano-SnO2 gas sensor performances: Where and how stay the catalytic atoms?”, Sensors and Actuators B: Chemical, 79, 98-106.
[19]U. S. Choi, G. Sakai, K. Shimanoe, N. Yamazoe, 2004, “Sensing properties of SnO2–Co3O4 composites to CO and H2”, Sensors and Actuators B: Chemical, 98, 166-173.
[20]F. Pourfayaz, A. Khodadadi, Y. Mortazavi, S.S. Mohajerzadeh, 2005, “CeO2 doped SnO2 sensor selective to ethanol in presence of CO, LPG and CH4”, Sensors and Actuators B: Chemical, 108, 172-176.
[21]N. Bayal, P. Jeevanandam, 2013, “Sol–gel synthesis of SnO2–MgO nanoparticles and their photocatalytic activity towards methylene blue degradation”, Materials Research Bulletin, 48, 3790-3799.
[22]K. N. Kim, H. K. Jung, H. D. Park, D. Kim, 2002, “High luminance of new green emitting phosphor, Mg2SnO4:Mn”, Journal of Luminescence, 99, 169–173.
[23]B. Lei, B. Li, X. Wang, W. Li, 2006, “Green emitting long lasting phosphorescence (LLP) properties of Mg2SnO4:Mn2+ phosphor”, Journal of Luminescence, 118, 171-178.
[24]J. Zhang, Q. Qin, M. Yu, M. Zhou, Y. Wang., 2012, “The photoluminescence, afterglow and up conversion photostimulated luminescence of Eu3+ doped Mg2SnO4 phosphors”, Journal of Luminescence, 132, 23–26.
[25] G. Li, X. Zhang, C. Peng, M. Shang, D. Geng, Z. Cheng, J. Lin, 2011, “Cyan-emitting Ti4+- and Mn2+-coactivated Mg2SnO4 as a potential phosphor to enlarge the color gamut for field emission display”, Journal of Materials Chemistry, 21, 6477-6479.
[26] A. Torisaka, H. Kaneko, K. Nomizu, S. Abe, T. Ishigaki, K. Toda, K. Uematsu, M. Sato, 2010, “Synthesis and luminescence properties of non-doped long persistent phosphors: Mg2SnO4”, Key Engineering Materials, 421-422, 352-355.
[27]W. Xiaojun, Z. Xiaochun, 2010, “A New Red Emitting Phosphor Mg2SnO4: Eu”, Applied Mechanics and Materials, 33, 313-316.
[28]F. Xue, Y. Hu, L. Fan, G. Ju, X. Lin, T. Lv, Z. Mu, 2017, “Reversible white-brown photochromism in a self-activated long-persistent phosphor Mg2SnO4”, Optical Materials Express, 7, 1014-1021.
[29]J. Zhang, M. Yu, Q. Qin, H. Zhou, M. Zhou, 2010, “The persistent luminescence and up conversion photostimulated luminescence properties of nondoped Mg2SnO4 material”, Journal of Applied Physics, 108, 123518-1–123518-7.
[30]S. Zhongxin, C. Meifeng, M. Yunxia, Y. Xunzhi, L. Xia, 2011, “Study on long afterglow performance of Mn2+ -activated green-emitting Mg2SnO4 phosphor”, New Chemical Materials, 39, 86-87.
[31]J. C. Zhang, Q. S. Qin, M. H. Yu, J. Y. Sun, L. R. Shi, X. K. Ma, 2011, “Up-Conversion Photostimulated Luminescence of Mg2SnO4 for Optical Storage”, Chinese Physics Letters, 28, 027802-1–027802-3.
[32]K. N. Kim, H. K. Jung, H. D. Park, D. Kim, 2001, “Cathodoluminescence properties of novel Mg2SnO4: Mn phosphor under low‐voltage electron excitation”, Journal of Information Display, 2, 13-17.
[33]J. C. Zhang, Q. S. Qin, M. H. Yu, H. L. Zhou, M. J. Zhou, 2011, “Photoluminescence and persistent luminescence properties of non-doped and Ti4+-doped Mg2SnO4 phosphors”, Chinese Physics B, 20, 094211-1 - 094211-5.
[34]X. Fu, 2005, “Photoluminescence enhancement of SnO2:Eu by Mg2+ doping”, Materials Science and Engineering B, 123, 45-49.
[35]O. A. Fouad, G. Glaspell, M. S. El-Shall, 2008, “Growth and Characterization of ZnO, SnO2 and ZnO/SnO2 Nanostructures from the Vapor Phase”, Topics in Catalysis, 47, 84-96.
[36]L. Zhao, J. Ran, Z. Shu, G. Dai, P. Zhai, S. Wang, 2011, “Effects of Calcination Temperatures on Photocatalytic Activity of Ordered Titanate Nanoribbon/SnO2 Films Fabricated during an EPD Process”, International Journal of Photoenergy, 2012, 472958-1 - 472958-7.
[37]W.Z. Li, C. H. Vannoy, R. M. Leblanc, D. Z. Wang, 2009, “Synthesis, characterization and optical properties of Mg(OH)2 micro-/nanostructure and its conversion to MgO”, Ceramics International, 35, 3355-3364.
[38] M. Li, X. Wang, H. Li, H. Di, X. Wu, C. Fang, B. Yang, 2013, “Preparation of photoluminescent single crystalline MgO nanobelts by DC arc plasma jet CVD”, Applied Surface Science, 274, 188-194.
[39]H. Perveen, M. A. Farrukh, M. Khaleeq-ur-Rahman, B. Munir, M. A. Tahir, 2015, “Synthesis, Structural Properties and Catalytic Activity of MgO–SnO2 Nanocatalysts”, Russian Journal of Physical Chemistry A, 89, 99-107.
[40]B. G. Abead, M. H. Dwech, K. A. Aadim, 2015, “Structural and Optical Properties of SnO2: MgO Thin Films Preparing by Pulse Laser Deposition Technique at 423K”, Journal of Kerbala University, Vol. 13, No.3, 293-302.
[41]T.G.G. MaffeÏs, G.T. Owen, M.W. Penny, T.K.H. Starke, S.A. Clark, H. Ferkel, S.P. Wilks, 2002, “Nano-crystalline SnO2 gas sensor response to O2 and CH4 at elevated temperature investigated by XPS”, Surface Science, 520, 29-34.
[42]G. Sangami, N. Dharmaraj, 2012, “UV–visible spectroscopic estimation of photodegradation of rhodamine-B dye using tin(IV) oxide nanoparticles”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97, 847-852.
[43]A. M. Azad, L. J. Min, M. A. Alim, 2001, “Mg2SnO4 ceramics II. Electrical characterization”, Ceramics International, 27, 335-341.
[44]H. Tang, C. Cheng, G. Yu, H. Liu, W. Chen, 2015, “Structure and electrochemical properties of Mg2SnO4 nanoparticles synthesized by a facile co-precipitation method”, Materials Chemistry and Physics, 159, 167-172.
[45]V. K. Premkumar, G. Sivakumar, 2017, “Hydrothermally synthesized cubic magnesium stannate (Mg2SnO4) nanoparticles and its electrochemical performances”, Journal of Materials Science: Materials in Electronics, 28, 14226-14233.
[46]Y. C. Chen, C. H. Li, 2016, “Improving quality factor of Mg2SnO4 ceramics by removing moisture content from starting raw materials”, Ceramics International, 42, 9749-9751.
[47]S. Islam, N. Bidin, M. A. Saeed, S. Riaz, M. A. A. Bakar, S. Naseem, K. N. Abbas, M. M. Sanagi, 2016, “Synthesis and characterization of room temperature sol–gel-assisted transparent tin-doped magnesium oxide nanoparticles’ protective coating”, Journal of Sol-Gel Science and Technology, 81, 623–631.
[48]呂宗昕,吳偉宏,2004,“奈米科技與二氧化鈦光觸媒”,科學發展,376期,頁72~77,4月。
[49]石豫臺,楊和學,2013,“淺談奈米光觸媒”,科學研習,No. 52-1,頁20~25,1月。
[50] X. Zhong, S. Royer, H. Zhang, Q. Huang, L. Xiang, S. Valange, J. Barrault, 2011, “Mesoporous silica iron-doped as stable and efficient heterogeneous catalyst for the degradation of C.I. Acid Orange 7 using sono–photo-Fenton process”, Separation and Purification Technology, 80, 163-171.
[51]S. Khan, M. Al-Shahry, W. B. Ingler, 2002, “Efficient Photochemical Water Splitting by A Chemically Modified n-TiO2”, Science, 297, 2243-2245.
[52]M. Muruganandham, M. Swaminathan, 2006, “Photocatalytic decolourisation and degradation of Reactive Orange 4 by TiO2-UV process”, Dyes and Pigments, 68, 133-142.
[53]P. Pascariu, A. Airinei, N. Olaru, L. Olaru, V. Nica, 2016, “Photocatalytic degradation of Rhodamine B dye using ZnO–SnO2 electrospun ceramic nanofibers”, Ceramics Internationa, l42, 6775–6781.
[54]廖秋榮,2008,“可視光光觸媒在環境保護之應用技術”,台灣土壤及地下水環境保護協會,27,pp. 13-21。
[55] Y. Y. Chen, “Quantum Size Effects and Physical Properties in Nanostructures”, Institute of Physics, Academia Sinica.
[56]J. Bandara, R.A.S.S. Ranasinghe, 2007, “The effect of MgO coating on photocatalytic activity of SnO2 for the degradation of chlorophenol and textile colorants; the correlation between the photocatalytic activity and the negative shift of flatband potential of SnO2”, Applied Catalysis A: General, 319, 58-63.
[57]李静霞,黄靓,戴维林,范康年,2008,“高活性MgO/SnO2 复合金属氧化物催化剂的合成及其在双氧水选择氧化环己酮制ε-己内酯反应中的应用”,化學學報,第66卷,頁5~9。
[58]Z. Guangxu, Ren Xiaocong, Z. Hongbo, P. Yu, G. Shaoyong, 2015, “MgO/SnO2/WO3 as catalysts for synthesis of ε-caprolactone over oxidation of cyclohexanone with peracetic acid”, Catalysis Communications, 58, 59-63.
[59]S. G. Zhang, S. F. Yin, Y. D. Wei, S. L. Luo, C. T. Au, 2012, “Novel MgO–SnO2 Solid Superbase as a High-Efficiency Catalyst for One-Pot Solvent-Free Synthesis of Polyfunctionalized 4H-pyran Derivatives”, Catalysis Letters, 145, 608-614.
[60]C. Luan, J. Ma, X. Yu, Z. Zhu, W. Mi, Y. Lv, 2012, “Synthesis and properties of epitaxial SnO2 films deposited on MgO (100) by MOCVD”, Vacuum, 86, 1333-1335.
[61]J. Bandara, U.W. Pradeep, 2008, “Tuning of the flat-band potentials of nanocrystalline TiO2 and SnO2 particles with an outer-shell MgO layer”, Thin Solid Films, 517, 952-956.
[62]M.B. Sahana, C. Sudakar, A. Dixit, J.S. Thakur, R. Naik, V.M. Naik, 2012, “Quantum confinement effects and band gap engineering of SnO2 nanocrystals in a MgO matrix”, Acta Materialia, 60, 1072-1078.
[63]J. Ma, G. Yang, M. Qin, X. Zheng, H. Lei, C. Chen, Z. Chen, Y. Guo, H. Han, X. Zhao, G. Fang, 2017, “MgO Nanoparticle Modified Anode for Highly Efficient SnO2-Based Planar Perovskite Solar Cells”, Advanced Science, 4, 1700031 pp.1-9.
[64]E. N. Jayaweera, G. R. A. Kumara, C. Kumarage, S. K. Ranasinghe, R. M. G. Rajapakse, H. M. N. Bandara, O. A. Ileperuma, B. S. Dassanayake, 2018, “CdS nanosheet-sensitized Solar Cells Based on SnO2/MgO Composite Films”, Journal of Photochemistry and Photobiology A: Chemistry, 364, 109-115.
[65]M. Kitaura, S. Tani, S. Mitsudo, K. Fukui, 2010, “Characterization of zinc magnesium stannate phosphor fine particles synthesized by electromagnetic wave heating”, Journal of Vacuum Science and Technology B, 28, C2C20- C2C25.
[66]M. Kitaura, S. Tani, S. Mitsudo, K. Fukui, 2010, “Photoluminescence enhancement in manganese-doped magnesium stannate phosphors synthesized by millimeter-wave irradiation”, Radiation Measurements, 45, 503-505.
[67]郭鹏,彭林志,张为海,刘 雷,熊 娟,2015,“Pr掺杂Mg2SnO4纳米颗粒的制备及其光致发光性能”,无机材料学报,第30卷,第11期,1172-1176。
[68]劉如熹,劉宇桓,2006,“發光二極體用氧氮螢光粉介紹”,全華科技。
[69]陳俞仲,2005,“錫酸鹽Mg2SnO4(M=Ca, Sr, Zn) 螢光粉之合成與螢光特性研究”,國立成功大學材料科學及工程學系博士論文。
[70]柯韋志,陳奕光,粘群,林皇羽,林芳宇,曾敬媛,盧弘毅,王博漢,羅英豪,陳維翔,“化學與光電”,日期不詳。
[71]A. Kitai, 2008, Luminescent Materials and Applications, Wiley, USA.
[72]王筱姍,陳韋廷,劉如熹,2013,“發光二極體用之螢光粉熱特性探討”,光連雙月刊,5月。
[73]Y. Tian, 2014, “Development of phosphors with high thermal stability and efficiency for phosphor-converted LEDs”, Journal of Solid State Lighting, 1-15.
[74]蘇一哲,湯偉鉦,2012,“溶膠-凝膠法製備奈米複合材料”,化學,第七十卷,第一期,頁39-51。
[75]M. Niederberger, N. Pinna, 2009, “Aqueous and Nonaqueous Sol-Gel Chemistry”, Metal Oxide Nanoparticles in Organic Solvents, 7-18.
[76]J. Wei, B. Huang, P. Wang, Z. Wang, X. Qin, X. Zhang, X. Jing, H. Liu, J. Yu, 2011, “Photocatalytic Properties of Nitrogen-Doped Bi12TiO20 Synthesized by Urea Addition Sol-Gel Method”, International Journal of Photoenergy, 2012, 8.
[77]A. Seifitokaldani, O. Savadogo, M. Perrier, 2015, “Stability and catalytic activity of titanium oxy-nitride catalyst prepared by in-situ urea-based solegel method for the oxygen reduction reaction (ORR) in acid medium”, International Journal of Hydrogen energy, 40, 10427-10438.
[78]O. Sha, S. Wang, Z. Qiao, W. Yuan, Z. Tang, Q. Xu, Y. Su, 2012, “Synthesis of spinel LiNi0.5Mn1.5O4 cathode material with excellent cycle stability using urea-based sol–gel method”, Materials Letters, 89, 251-253
[79]A. A. Al-Shahrani, 2005, “Sintering behavior and thermal property of Mg2SnO4”, Journal of Materials Science: Materials in Electronic, 16, 193-196.
[80]Z. Dohnalova´, P. Sulcova´, M. Trojan, 2010, “Synthesis and colour properties of pigments based on terbium-dopped Mg2SnO4”, Journal of Thermal Analysis and Calorimetry, 101, 973-978.
[81]V. Berbenni, C. Milanese, G. Bruni, A. Girella, A. Marini, 2012, “Mechanically assisted solid state synthesis of Mg2SnO4”, Journal of Thermal Analysis and Calorimetry, 110, 831–837
[82]H. Wang, J. Liang, H. Fan, B. Xi, M. Zhang, S. Xiong, Y. Zhu, Y. Qian, 2008, “Synthesis and gas sensitivities of SnO2 nanorods and hollow microspheres”, Journal of Solid State Chemistry, 181, 122-129.
[83]A. Tomita, T. Sato, K. Tanaka, Y. Kawabe, M. Shirai, K. Tanaka, E. Hanamura, 2004, “Luminescence channels of manganese-doped spinel”, Journal of Luminescence, 109, 19-24.
[84]M. Vrankic´, B. Grzˇeta, V. Mandic´, E. Tkalcˇec, S. Miloševic´, M. Cˇeh, B. Rakvin, 2012, “Structure, microstructure and photoluminescence of nanocrystalline Ti-doped gahnite”, Journal of Alloys and Compounds, 543, 213-220.
[85] S. K. Misra, S. I. Andronenko, D. Tipikin, J. H. Freed, V. Somani, O. Prakash, 2016, “Study of paramagnetic defect centers in as-grown and annealed TiO2 anatase and rutile nanoparticles by a variable-temperature X-band and high-frequency (236GHz)EPR”, Journal of Magnetism and Magnetic Materials, 401, 495-505.
[86]L. E. Bausa, I. Vergara, J. Garcia-Sole, 1990, “Laser-excited luminescence in Ti-doped MgAl2O4 spinel”, Journal of Applied Physics, 68, 736-740.
[87]D. Zhang, C. Wang, Y. Liu, Q. Shi, W. Wang, Y. Zhai, 2012, “Green and red photoluminescence from ZnAl2O4:Mn phosphors prepared by sol–gel method”, Journal of Luminescence, 132, 1529-1531.
[88]T. Yamashita, K. Ueda, 2007, “Blue photoluminescence in Ti-doped alkaline-earth stannates”, Journal of Solid State Chemistry, 180, 1410-1413.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top