跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 06:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林曄澤
研究生(外文):LIN, YE-ZE
論文名稱:基於大數據分析之智慧型土壤恆濕自動灌溉系統之研製
論文名稱(外文):An Intelligent Constant-Humidity Irrigation System based on the Big Data Analytics: Design and Implementation
指導教授:黃世昌黃世昌引用關係
指導教授(外文):HUANG, SHIH-CHANG
口試委員:潘仁義簡銘伸徐元寶
口試委員(外文):PAN, JEN-YIJIAN, MING-SHENHSU, YUAN-PAO
口試日期:2019-07-12
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:資訊工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:53
中文關鍵詞:土壤濕度預測土壤水分消耗模型土壤濕度恆定智慧型自動灌溉系統
外文關鍵詞:Soil moisture predictionsoil water consumption modelconstant-humidityIntelligent Constant-Humidity Irrigation System
相關次數:
  • 被引用被引用:1
  • 點閱點閱:522
  • 評分評分:
  • 下載下載:175
  • 收藏至我的研究室書目清單書目收藏:2
近幾年全球氣候異常,導致氣候時節混亂,而農業也在氣候異常的影響下,變得更加難以生存,隨著科技進步與物聯網的普及發展,開始有研究論文設計自動灌溉的系統,但許多論文都是採用統一式灌溉,採用統一式灌溉可能會因為地形緣故導致部分區域的土壤濕度可能過高,因此本論文決定設計一個能夠顧及全部土壤面積濕度,並將土壤濕度維持在一特定範圍的智慧型土壤恆濕自動灌溉系統。本論文主要設計了一個透過土壤濕度的資料數據收集建立水分在培土壤中的消耗模型,透過此一模型建立智慧型的均濕灌溉系統,主要的做法是透過水分在土壤中的消耗模型,計算下一次的給水時間點應該在哪裡,除了事先收集的數值外,本論文系統還能夠透過將每次灌溉後的濕度變化儲存到資料庫中,當要進行給水時間點時,則會優先搜尋資料庫中的數據使用進行計算,以達到自我學習。本文的水分消耗模型先透過大量、不同深度、不同距離的土壤水分資料收集,在透過一次迴歸函數推算水分在土壤的消耗速度。有了該迴歸函數便可以依此做為土壤水分數值的預測,最後再透過實際測量結果與計算推測出之結果,驗證此自動灌溉系統,實驗結果顯示,在灌溉間隔2小時的濕度值的預測誤差為1.07%,而灌溉間隔3小時的濕度值的預測誤差為0.79%,灌溉間隔4小時的濕度值的預測誤差為0.47%。在結合三軸移動系統以後,我們的方法也能夠將多個區域的土壤濕度保持在一特定範圍中,且維持時間最高也可達到70%的總實驗時間。
In recent years, global climate anomalies have caused climate turmoil, and agriculture has become more difficult to survive under the influence of climate anomalies. Fortunately, with the advancement of science and technology and the popularization of the internet of things, there have been research systems designed to automatically irrigate systems, but many papers use uniform irrigation. The uniform irrigation may cause the soil humidity in some areas to be too high due to the topography. Therefore, this paper decided to design an intelligent constant-humidity irrigation system. This paper mainly designs a model for the consumption of water in the soil through the data collection of soil moisture. By using this model, an intelligent constant-humidity irrigation system is established. The main method is to calculate the next time the water supply should be based on the water consumption model in the soil. In addition to the previously collected values, the paper system can also store the humidity changes after each irrigation into the database. At the time of water supply, the data in the database will be searched first for calculation to achieve self-learning. This paper builds the soil humidity consumption model by collecting humidity data of soil. An intelligent constant-humidity irrigation system is implemented based on this model. The main idea is to predict the soil humidity according to the collected humidity data. A large number of different depths and different distances soil humidity are collected and then the regression function is applied to estimate the trend of humidity variation. The forecasting humidity is according to the regression function and is verified via the automatic irrigation system. Experimental results show that the prediction error of the humidity value at the irrigation interval of 2 hours is 1.07%, and the prediction error of the humidity value at the irrigation interval of 3 hours is 0.79%, and the prediction error of the humidity value at the irrigation interval of 4 hours is 0.47%. After combining the three-axis moving system, our method can also maintain the soil humidity in multiple areas with a specific range, and the maintenance time can reach 70% of the total experimental time.
摘要……………………………………………………………………………………………………………………………………………………………………i
Abstract………………………………………………………………………………………………………………………………………………………ii
誌謝………………………………………………………………………………………………………………………………………………………………iii
目錄…………………………………………………………………………………………………………………………………………………………………iv
表目錄………………………………………………………………………………………………………………………………………………………………v
圖目錄……………………………………………………………………………………………………………………………………………………………vi
符號說明……………………………………………………………………………………………………………………………………………………vii
第1章 簡介 ……………………………………………………………………………………………………………………………………………1
1.1 研究背景………………………………………………………………………………………………………………1
1.2 研究動機………………………………………………………………………………………………………………7
1.3 研究目的………………………………………………………………………………………………………………8
1.4 論文架構………………………………………………………………………………………………………………8
第2章 相關文獻探討…………………………………………………………………………………………………………………………9
2.1 文獻探討………………………………………………………………………………………………………………9
2.2 現有產品分析…………………………………………………………………………………………………12
第3章 系統設計與方法…………………………………………………………………………………………………………………15
3.1 環境設置與前提假設…………………………………………………………………………………15
3.1.1 水分消耗模型……………………………………………………………………………23
3.2 系統架構…………………………………………………………………………………………………………24
3.2.1 主控制系統………………………………………………………………………………25
3.2.2 自動感測灌溉系統…………………………………………………………………27
3.2.2.1 自動感測灌溉系統的三軸機構設計…………28
3.2.3 移動系統……………………………………………………………………………………31
3.3 濕度恆定的控制…………………………………………………………………………………………33
第4章 實驗數據驗證與分析………………………………………………………………………………………………………34
第5章 結論與未來展望…………………………………………………………………………………………………………………47
參考文獻……………………………………………………………………………………………………………………………………………………48

[1]彭宣雅 and 戴永華, “農民搶收農作物 有的沒熟超焦慮,” 09-Jul-2018. [Online]. Available: https://udn.com/news/story/12338/3242449.
[2]吳傑沐, “瑪莉亞颱風逼台 苗栗搶收一期稻,” 08-Jul-2018. [Online]. Available: https://tw.appledaily.com/new/realtime/20180708/1387487.
[3]劉濱銓, “就怕強颱瑪莉亞「清檯」 葡萄農爛果、未熟全搶收,” 10-Jul-2018. [Online]. Available: http://news.ltn.com.tw/news/life/breakingnews/2484148.
[4]吳秉蕙, “強烈颱風瑪莉亞持續南偏,吳德榮:威脅台灣程度越來越大,” 07-Jul-2018. [Online]. Available: https://www.storm.mg/article/459683.
[5]行政院農業委員會, “107年7月瑪莉亞颱風農業災情報告(農委會),” 13-Jul-2018. [Online]. Available: https://www.coa.gov.tw/theme_data.php?theme=news&sub_theme=agri&id=7380.
[6]行政院, “20180830交通部氣象局(簡報):「0823熱帶低壓水災應變處置作為」,” 30-Aug-2018. [Online]. Available: https://www.slideshare.net/OpenMic1/201808300823.
[7]行政院農業委員會, “107年0823熱帶低壓水災農業災情報告(農委會),” 13-Jul-2018. [Online]. Available: https://www.coa.gov.tw/theme_data.php?theme=news&sub_theme=agri&id=7451.
[8]NCDR, “NCDR 天氣與氣候監測.” [Online]. Available: https://watch.ncdr.nat.gov.tw/watch_heavyrain.aspx.
[9]J. Gutierrez, J. F. Villa-Medina, A. Nieto-Garibay, and M. A. Porta-Gandara, “Automated Irrigation System Using a Wireless Sensor Network and GPRS Module,” IEEE Trans. Instrum. Meas., vol. 63, no. 1, pp. 166–176, Jan. 2014.
[10]Yunseop Kim, R. G. Evans, and W. M. Iversen, “Remote Sensing and Control of an Irrigation System Using a Distributed Wireless Sensor Network,” IEEE Trans. Instrum. Meas., vol. 57, no. 7, pp. 1379–1387, Jul. 2008.
[11]“園藝三合一檢測土壤 濕度計 酸鹼計 光照度計.” [Online]. Available: https://24h.pchome.com.tw/prod/DEBP12-A9005SYRI.
[12]“JVG-200便攜式-土壤水分計/土壤溫度計.” [Online]. Available: http://jetec.com.tw/chinese/product6-1_JVG200.html.
[13]Li-Han Chang, “Arduino 亮度土壤濕度計(五)-土壤濕度計 YL-69.”.
[14]Lijen888, “XD-28 土壤濕度感測器 (Arduino).”.
[15]Raspberry Pi, “raspberry pi 3.” [Online]. Available: https://www.raspberrypi.org/.
[16]Arduino, “Arduino.” [Online]. Available: https://www.arduino.cc/.
[17]S. Xiong, L. Wang, X. Qu, and Y. Zhan, “Application Research of WSN in Precise Agriculture Irrigation,” in 2009 International Conference on Environmental Science and Information Application Technology, Wuhan, China, 2009, pp. 297–300.
[18]Y. Liu, L. Kong, B. Xu, T. Du, S. Hou, and S. Kang, “Design of Intelligent Control System of Crop Partial root-zone Alternative Irrigation,” in 2012 International Conference on Systems and Informatics (ICSAI2012), Yantai, China, 2012, pp. 397–399.
[19]G. Kavianand, V. M. Nivas, R. Kiruthika, and S. Lalitha, “Smart drip irrigation system for sustainable agriculture,” in 2016 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), Chennai, India, 2016, pp. 19–22.
[20]R. N. Rao and B. Sridhar, “IoT based smart crop-field monitoring and automation irrigation system,” in 2018 2nd International Conference on Inventive Systems and Control (ICISC), Coimbatore, 2018, pp. 478–483.
[21]V. Ramachandran, R. Ramalakshmi, and S. Srinivasan, “An Automated Irrigation System for Smart Agriculture Using the Internet of Things,” in 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 2018, pp. 210–215.
[22]S. Muthukumar, K. Karthikeyan, G. Ranjithkumar, and R. Kavin, “A Cost Effective System for Auto Irrigation, Soilmonitoring and Control,” in 2018 International Conference on Soft-computing and Network Security (ICSNS), Coimbatore, 2018, pp. 1–7.
[23]R. Prabha, E. Sinitambirivoutin, F. Passelaigue, and M. V. Ramesh, “Design and Development of an IoT Based Smart Irrigation and Fertilization System for Chilli Farming,” in 2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, 2018, pp. 1–7.
[24]S. Ali, H. Saif, H. Rashed, H. AlSharqi, and A. Natsheh, “Photovoltaic Energy Conversion Smart Irrigation System-Dubai Case Study (Goodbye Overwatering & Waste Energy, Hello Water & Energy Saving),” in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa Village, HI, 2018, pp. 2395–2398.
[25]L. M. da Silva, E. H. Junior, K. J. P. Carneiro, J. M. de Matos, A. P. Anacilia M C. de Vieira, and R. da S. Barreto, “Tellus – Greenhouse Irrigation Automation System,” in 2018 IEEE Symposium on Computers and Communications (ISCC), Natal, 2018, pp. 01239–01242.
[26]“Arduino and Soil Moisture Sensor -Interfacing Tutorial.” [Online]. Available: http://www.circuitstoday.com/arduino-soil-moisture-sensor.
[27]“Math.NET Numerics.” [Online]. Available: https://numerics.mathdotnet.com/.
[28]“FarmBot.” [Online]. Available: https://farm.bot/.
[29]“草坪噴水器具.” [Online]. Available: https://24h.pchome.com.tw/store/DEBP2K.
[30]“自動灑水器.” [Online]. Available: https://24h.pchome.com.tw/store/DEBP14.
[31]“大型噴霧器.” [Online]. Available: https://24h.pchome.com.tw/store/DEBP35.
[32]交通部中央氣象局, “颱風資料庫.” [Online]. Available: https://rdc28.cwb.gov.tw/TDB/public/precipitation_statistics/.
[33]行政院農業委員會, “108年1~2月旱災等農業災情報告,” 13-Jul-2018. [Online]. Available: https://www.coa.gov.tw/theme_data.php?theme=news&sub_theme=agri&id=7687.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top