跳到主要內容

臺灣博碩士論文加值系統

(98.84.25.165) 您好!臺灣時間:2024/11/14 19:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張詠傑
研究生(外文):ZHANG, YONG-JIE
論文名稱:陰極電弧系統之新型電磁控弧源設計與沉積氮化鋁鈦硬質薄膜機械性質研究
論文名稱(外文):Electric Magnetron Arc Source Design of Cathodic Arc Evaporation and Deposition of AlTiN Hard Coatings
指導教授:張銀祐
指導教授(外文):CHANG, YIN-YU
口試委員:張守一郭俞麟
口試委員(外文):CHANG, SHOU-YIKUO, YU-LIN
口試日期:2018-07-17
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與電腦輔助工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:65
中文關鍵詞:陰極電弧沉積電磁控弧源氮化鋁鈦硬質鍍膜機械性質
外文關鍵詞:magnetron sourcesplit arcmechanical propertiesAlTiN
相關次數:
  • 被引用被引用:5
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
  物理氣相沉積之陰極電弧系統,因其沉積速率快且機台設備低廉,廣受刀具及模具工業鍍膜所用,但其有一最大缺陷為沉積於薄膜表面之微粒與液滴,此缺陷造成薄膜表面精光度及機械性質下降。因此有許多研究針對此一缺點提出改善防法,例如降低陰極靶電流、於靶材前方放置一磁過濾管,藉由磁場導引,避免微粒沉積於薄膜表面。但這兩種方法皆會導致薄膜沉積速率下降,降低生產效率。本研究提出一種新型電磁控方式,於靶材後方設置兩組電磁線圈,藉由調整電磁線圈匝束及電壓,改變靶面磁場分布情況,藉由磁場影響電弧運動,減少微粒與液滴生成。
  本研究設計之電磁控裝置為兩組電磁線圈,藉由調整線圈電壓找出不同參數之磁場分佈,使用高速攝影機拍攝不同電壓條件下之電弧運動情形,並且將陰極靶電流提升至150A,觀察電弧在傳統永磁控與電磁控兩種不同弧源設計下之電弧情況。後續使用兩種弧源沉積AlTiN薄膜,靶材為純Ti靶及AlTi合金靶,觀察兩者薄膜表面微粒與機械性質差異。本研究藉由電漿光譜分析儀(OES)觀察電磁控弧源之電漿特性,薄膜微結構透過場發射電子顯微鏡(FE-SEM)觀察薄膜表面微粒與液滴分佈及橫截面結構,再透過X光繞射分析儀(XRD)進行晶相分析。機械性質使用洛氏壓痕試驗儀對薄膜附著力進行分析,並觀察其裂紋情況,薄膜硬度使用微小維克氏壓痕試驗基測試,最後經由球對盤磨耗試驗機(ball-on-disk)檢測薄膜抗磨耗性能,並配合表面輪廓儀觀察磨耗軌跡及薄膜表面粗糙度。
  由實驗結果得知使用電磁控弧源沉積之AlTiN薄膜對比傳統永磁控弧源表面微粒大幅降低,表面微粒與液滴數減少了60%,且在相同製程下厚度提升。而由於電磁控弧源可改變靶面磁場分佈,因此也可大幅提升靶材利用率,其中電磁控電壓參數為1:3時,靶面磁場分佈較為平穩,靶中心磁場與靶外緣磁場差異小,可有效將電弧平均分散於靶面,於OES電漿光譜上之離子強度遠高於永磁控弧源約為1.5倍,且薄膜具有最佳硬度約為31GPa,因此使用電磁控弧源且電壓比為1:3沉積AlTiN薄膜,可有效提升其機械性質與降低缺陷生成。

The cathodic arc system of physical vapor deposition, because of its fast deposition rate and low cost of machine equipment, is widely used by the tool and mold industry coatings, but it has one of the biggest defects are particles and droplets deposited on the surface of the film. This defect causes the surface of the film. Decrease in luminosity and mechanical properties. Therefore, many researches have proposed improvement methods for this drawback, such as reducing cathode target current, placing a magnetic filter tube in front of the target, and avoiding the deposition of particles on the film surface by magnetic field guidance. However, both methods can lead to a decrease in the deposition rate of the thin film and reduce the production efficiency. This study proposes a new type of electromagnetic control method. Two sets of electromagnetic coils are arranged behind the target. By adjusting the electromagnetic coil and voltage, the distribution of the magnetic field on the target surface is changed, and the magnetic field is affected by the magnetic field to reduce the generation of particles and droplets.
  The electromagnetic control device designed in this study consists of two sets of electromagnetic coils. By adjusting the coil voltage to find the magnetic field distribution of different parameters, using a high-speed camera to take pictures of arc motion under different voltage conditions, and raising the cathode target current to 150A, observe the arc in the traditional permanent magnet control and electromagnetic control two different arc source design under the arc situation. Followed by the use of two kinds of arc sources deposited AlTiN film, the target is a pure Ti target and AlTi alloy target, observe the difference between the film surface and the mechanical properties of the two films. In this study, the plasma characteristics of the electromagnetic arc source were observed by the plasma spectroscopy (OES). The thin film microstructure was observed through a field emission electron microscope (FE-SEM) to observe the distribution of particles and droplets on the surface of the film and the cross-sectional structure. X-ray diffraction analyzer (XRD) for crystal phase analysis. Mechanical Properties The Rockwell indentation tester was used to analyze the adhesion of the film and observe the cracks. The hardness of the film was tested using the tiny Vickers indentation test base, and finally passed through a ball-on-disk tester. The wear resistance of the film was measured, and the surface profiler was used to observe the abrasion trajectory and the film surface roughness.
  From the experimental results, it is known that when the arc is used under the influence of the electromagnetic field, the arc is split and evenly dispersed on the target surface, and the target can be consumed on average. The deposited AlTiN thin film is showed greatly smaller surface roughness as compared to the AlTiN deposited by the conventional permanent arc source, and the surface particles and liquid are greatly reduced. The number of micro particles is reduced by 60% and the thickness increases with the same process. Since the electromagnetic arc source can change the magnetic field distribution on the target surface, it can also greatly increase the utilization of the target material.

摘要...............i
Abstract...............ii
誌謝...............iv
目錄...............v
表目錄...............viii
圖目錄...............ix
第一章 緒論...............1
1.1前言...............1
1.2研究目的與動機...............1
第二章 文獻回顧...............3
2.1陰極電弧沉積原理...............3
2.1.1 陰極電弧蒸鍍系統(Cathodic Arc Evaporation, CAE)...............3
2.1.2 陰極電弧微粒的生成及改善...............4
2.2薄膜成長機制...............11
2.3薄膜結構...............13
2.4 陰極電弧蒸鍍之光激發光譜電漿分析...............15
第三章 實驗方法與步驟...............18
3.1實驗流程...............18
3.2弧源製作與薄膜設計...............19
3.2.1電磁控弧源設計...............19
3.2.2使用永磁控弧源與電磁控弧源鍍製AlTiN薄膜...............24
3.3電漿光譜儀(OES)分析...............26
3.3.1電漿光譜分析儀(Optical Emission Spectroscopy, OES)...............26
3.4微結構分析...............28
3.4.1 X光繞射分析儀(X-Ray Diffractometer, XRD)...............28
3.4.2場發射掃描式電子顯微鏡分析(FE-SEM)...............31
3.4.3影像處理軟體(Image J)...............33
3.5機械性質分析...............34
3.5.1洛氏壓痕試驗儀(Rockwell Indentation)...............34
3.5.2微小維克氏硬度試驗機(Micro Vickers Hardness Tester)...............36
3.5.3磨耗試驗機(Tribometer ball on disk)...............38
第四章 結果與討論...............40
4.1陰極電弧電磁場控制與分析...............40
4.2永磁控弧源與電磁控弧源電弧分析...............42
4.2電漿光譜分析檢測...............45
4.3 X光繞射分析...............48
4.4 SEM微結構分析...............50
4.5薄膜之機械性質...............53
4.5.1洛氏壓痕分析...............53
4.5.2微小維克氏薄膜硬度值量測...............54
4.5.3磨耗試驗分析...............55
第五章 結論...............57
參考文獻...............58
Extended Abstract...............61




[1]李邦哲,2003,“薄膜成形技術新紀元”,台灣綜合展望,卷7,頁 71。http://www.tri.org.tw/per/doc/t07/065.pdf
[2]R. L. Boxman, S. Goldsmith, 1992,“Macroparticle contamination in cathodic arc coatings generation, transport and control”, Surface & Coatings Technology. 52, pp. 39-50.
[3]蔡定平,2001,真空技術與應用,國家實驗研究院儀器科技研究中心出版,新竹市。
[4]ZHAO Jia-xue, Jin Fan-ya, 2007,“Investigation of utilization ratio and calculating method of familiar magnetron sputtering targets”, Nuclear Fusion and Plasma Physics. 27, pp. 66-72.
[5]朗文昌,肖金泉,宮駿,孫超,黃榮芳,聞立時,2010,“軸對稱磁場對電弧離子鍍弧斑運動的影響”,金屬學報,46,pp. 372-379
[6]I. Zhirkov, A. Petruhins, J. Rosen, 2015,“Effect of cathode composition and nitrogen pressure on macroparticle generation and type of arc discharge in a DC arc source with Ti–Al compound cathodes”, Surface & Coatings Technology. 281, pp. 20-26.
[7]張銀祐,2004,陰極電弧活化沉積含金屬類鑽碳膜之製程與特性研究,國立中興大學材料工程學研究所碩士論文。
[8]Masao Kumagai, Ken Yukimura, Eiji Kuze, Toshiro Maruyama, Mamoru Kohata, Ken Numata, Hidenori Saito, Xinxin Ma, 2003,“Macroparticles on titanium nitiride thin film prepared by cathodic-arc plasma-based ion implantation and deposition”, Surface & Coatings Technology. 169-170, pp. 401-404.
[9]Nishibori, Mineo, 1992,“How to solve problems of films coated by ARC methods”, Surface & Coatings Technology. 52, pp. 229-323.
[10]M. Keidar, I. Beilis, R.L. Boxman, S. Goldsmith, 1996,“Macropartic1e interaction with a substrate in cathodic vacuum arc deposition”, Surface & Coatings Technology. 86-87, pp. 415-420.
[11]J. Koskinen, U. Ehrnstén, A. Mahiout, R. Lahtinen, J.-P. Hirvonen, S.-P. Hannula, 1993,“Porosity of thin diamond-like carbon films deposited by an arc discharge method”, Surface & Coatings Technology. 62, pp. 356-360.
[12]K. AKARI, H. TAMAGAKI, T. KUMAKIRI, K. TSUJI, 1990,“Reduction In Macroparticles During The Deposition of TiN Films Prepared by Arc Ion Plating”, Surface & Coatings Technology. 43-44, pp. 312-323.
[13]Vetter, J., 2014,“60 years of DLC coatings: Historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications”, Surface & Coatings Technology. 257, pp. 213-240.
[14]Hirofumi Takikawa, Hideto Tanoue, 2007,“Review of Cathodic Arc Deposition for Preparing Droplet-Free Thin Films”, IEEE TRANSACTIONS ON PLASMA SCIENCE. 35, pp. 992-999.
[15]賴岱暐,2011,AISI 4340 合金鋼電弧披覆Ti-Al-N薄膜之腐蝕與磨耗行為研究,大同大學材料工程研究所碩士論文。
[16]W.C. Lang, J.Q. Xiao, J. Gong, C. Sun, R.F. Huang, L.S. Wen, 2010,“Study on cathode spot motion and macroparticles reduction in axisymmetric magnetic field-enhanced vacuum arc deposition”, Vacuum. 84, pp. 1111-1117.
[17]Bai-Jun Xiao, Yi Chen, Wei Dai, Kwong-Yu Kwork, Teng-Fei Zhang, Qi-MinWang, Cheng-Yong Wang, Kwang Ho Kim, 2017,“Microstructure, mechanical properties and cutting performance of AlTiN coatings prepared via arc ion plating using the arc splitting technique”, Surface & Coatings Technology. 311, pp. 98-103.
[18]B. Warcholinski, A. Gilewicz, J. Ratajski, Z. Kuklinski, J. Rochowicz, 2012,“An analysis of macroparticle-related defects on CrCN and CrN coatings in dependence of the substrate bias voltage”, Vacuum. 86, pp. 1235-1239.
[19]A. Wahab Baouchi, Anthony J. Perry, 1991,“A study of the macroparticle distribution in cathodic-arc-evaporated TiN films”, Surface & Coatings Technology. 49, pp. 253-257.
[20]I. Petrov, P. B. Barna, L. Hultman, J. E. Greene, 2003,“Microstructural evolution during film growth”, Vacuum. 21, pp. 117-128.
[21]Thornton, John A., 1974,“Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings”, Vacuum. 11, pp. 666-670.
[22]Anders, André, 2010,“A structure zone diagram including plasma-based deposition and ion etching”, Thin Solid Films. 518, pp. 4087-4090.
[23]K. Keutel, E. Hettkamp, H. Fuchs, 2004,“Investigations of plasma properties during TiN deposition by a modified pulsed arc process”, Thin Solid Films. 458, pp. 173-178.
[24]L.P. Rivera, Enrique Camps, Stephen Muhl, Rafael Basurto, A. Zeinert, 2018,“Al-Si-N thin films deposited by laser ablation: Effect of plasma parameters on mechanical and optical properties”, Materials Research Bulletin. 99, pp. 306-313.
[25]鄭信民,林麗娟,2002,“X 光繞射應用簡介”,工業材料雜誌,181期,頁100-108。http://www.materialsnet.com.tw
[26]林麗娟,1994,“X 光繞射原理及其應用”,工業材料雜誌,86期,頁100-109
[27]林麗娟,1993,“X光繞射在工業材料分析上之應用”,工業材料雜誌,80期,頁50-55
[28]羅聖全,2013,“科學基礎研究之重要利器-掃瞄式電子顯微鏡(SEM)”,科學研習,52-5期,頁2-4
[29]ISO26443, INTERNATIONAL STANDARD, 2008,“Fine ceramics (advanced ceramics, advanced technical ceramics) — Rockwell indentation test for evaluation of adhesion of ceramic coatings”.
[30]黃振賢,蔡錫鎐,2001,材料實驗,文京圖書有限公司,臺中市。
[31]Jinjun Mo, Zhengtao Wu, Yuan Yao, Quan Zhang, Qimin Wang, 2018,“Influence of Y-addition and multilayer modulation on microstructure, oxidation resistance and corrosion behavior of Al0.67Ti0.33N coatings”, Surface & Coatings Technology. 342, pp. 129-136.
[32]Yinchao Xu, Kanghua Chen, Shequan Wang, Chenxi Pan, Songyi Chen, 2016,“Ti0$33Al0.67 cathode surface modifications and the effect on the mechanical and electrochemical properties of AlTiN coating”, Vacuum. 131, pp. 97-105.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊