(3.230.76.48) 您好!臺灣時間:2021/04/11 08:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林鈞鋒
研究生(外文):Jyun-Fong Lin
論文名稱:液相層析串聯質譜於河水及底泥中嘉磷塞和固殺草之殘留分析
論文名稱(外文):Residue Analysis of Glyphosate and Glufosinate in Water and Sediments by Liquid Chromatography Tandem Mass Spectrometry
指導教授:沈振峯
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:生物科技系碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:152
中文關鍵詞:農藥殘留嘉磷塞固殺草河水底泥
外文關鍵詞:Pesticide residuesGlyphosateGlufosinateWaterSedimentLC-MS/MS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:308
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
農藥的使用在農業生產的產量及品質上扮演一個很重要的角色,然而,過多的農藥可能殘留於環境中(如:河川、土壤等),造成環境危害。除草劑為常使用農藥種類之一,其中除草劑-嘉磷塞(glyphosate)和固殺草(glufosinate)為目前世界上最常使用的除草劑,由於其極高之水溶性,造成分析上的困難,因此本研究嘗試建立可用於河水和底泥中嘉磷塞、嘉磷塞代謝物(AMPA)與固殺草之殘留分析方法,此方法使用相對應之穩定同位素作為內標準品,以Fluorenylmethyloxycarbonyl chloride (FMOC-Cl)於硼酸緩衝溶液下進行衍生化,再以固相萃取匣淨化濃縮。其後以液相層析串聯質譜對各FMOC-衍生物進行偵測分析。以10mL水樣進行確效試驗,水樣中各分析標準品之檢量線範圍可達7.8-2000.0 ng/L:R2均大於0.997以上,測試偵測極限(S/N ratio≧3):嘉磷塞為1.4 ng/L、AMPA為1.7 ng/L和固殺草為0.7 ng/L,精密度(CV%,3種濃度,6重複)範圍為2.35-14.71 %,而準確度(%Error,3種濃度,6重複)可達±10.00 %以內。在真實河水樣品中(共分析32樣品),可測得嘉磷塞(105年27.1-1353.9 ng/L;106年32.4-1111.3 ng/L)、AMPA (105年60.2-1440.5 ng/L;106年67.5-1509.0 ng/L)、固殺草(105年20.0-178.0 ng/L;106年14.8-503.1 ng/L)的殘留。對底泥樣品,則先以鹼性水溶液進行萃取後,加入內標物再經FMOC-Cl衍生化與固相萃取,再以液相層析串聯質譜進行分析各FMOC-衍生物。以2 g底泥經萃取液獲得「空白土壤樣品」進行確效試驗,土壤各分析標準品之檢量線範圍可達0.78-100.0 ng/g,R2均大於0.998以上,測試偵測極限(以S/N ratio≧3估算):嘉磷塞為0.12 ng/g、AMPA為0.08 ng/g及固殺草為0.04 ng/g,測得精密度(CV%,3濃度,6重複)範圍為2.07-7.96%,而準確度(%Error,3濃度,6重複)可達±4.83%以內。在真實土壤樣品中(共32個樣品),可測得嘉磷塞(105年4.0-189.6 ng/g;106年2.4-34.7 ng/g) 及AMPA(105年3.3-233.6 ng/g;106年1.8-84.7 ng/g) ;固殺草檢出濃度則多為未檢出。
Glyphosate (N-(phosphonomethyl) glycine) and glufosinate (ammonium dl-homoalanin- 4-(methyl) phosphinate) are nonselective, broad spectrum, and highly polar herbicides which are wildly used for weed control in aquatic systems and vegetation control in non-crops areas. In addition, aminomethylphosphonic acid (AMPA) is the major degradation product of glyphosate presented in plants, water and soil samples. To address the concerns to its environmental residue and the possible adverse effects, two analytical methods for determining glyphosate, glufosinate and AMPA in river water and sediment samples were developed, respectively. The methods applied 9-Fluorenylmethyloxycarbonyl chloride (FMOC-Cl) derivertization, solid phase extraction (SPE) and LCMS/MS analysis of the synthesized FMOC-derivatives. The stable isotope internal standards for each analyte were also used. For the water sample analysis, the linear range was obtained from 7.8 to 2000.0 ng/L (r2 >0.997), the estimated detection limits (S/N ratio≧3) were 1.4 ng/L of glyphosate, 1.7 ng/L of AMPA and 0.7 ng/L of glufosinate. The obtained CV% of the spiked water samples (3 levels, 6 replicates ) were ranged at 2.35-14.71%, and the mean %Error of were -10.00~5.49% of glyphosate, -1.54~3.43% of AMPA and 0.17~5.77% of glufosinate. For the sediment analysis, the samples were firstly extracted with 0.6M KOH (aq) and cleaned up with SPE, and then prepared as water sample. The linear range was obtained from 0.78 to 100.00 ng/g (r2 >0.998), the estimated detection limits (S/N ratio≧3) were 0.12 ng/g of glyphosate, 0.08 ng/g of AMPA and 0.04 ng/g of glufosinate. The obtained CV% (3 levels, 6 replicates) of the spiked sediment samples were ranged at 2.07-7.96%, and the %Error were -2.54 to 4.33 % of glyphosate, -4.84 to 3.66 % of AMPA and -3.15 to-0.79 % of glufosinate, respectively.
The developed methods were used to analyze 32 water samples and 32 sediment samples that were collected from agricultural district of southern Taiwan (16 water and 16 sediment samples were received in 2016, and 16 water and 16 sediment samples were received in 2017). For the water samples, residue of glyphosate was found in 15 samples in 2016 (93.4% detected), ranged at 27.1-1353.9 ng/L, and 15 samples in 2017 (93.4% detected), ranged at 32.4-1111.3 ng/L. The residues of AMPA were found in 15 samples in 2016 (93.4% detected), ranged at 60.2-1440.5 ng/L, and 15 samples in 2017 (93.4% detected), ranged at 67.5-1509.0 ng/L. The residues of glufosinate were found in 4 samples in 2016 (25% detected), ranged at 20.0-178.0 ng/L, and 6 samples in 2017 (37.5% detected), ranged at 14.8-503.1 ng/L. For the sediment samples, residues of glyphosate were found in 14 samples in 2016 (87.5% detected), ranged at 4.0-189.6 ng/g, and 13 samples in 2017 (81.3% detected), ranged at 2.4-34.7 ng/g. The residues of AMPA were found in 16 samples in 2016 (100% detected), ranged at 3.3-233.6 ng/g, and 15 samples in 2017 (93.4% detected), ranged at 1.8-84.7 ng/g. The residues of glufosinate in the sediment samples were not detected.
摘要........................................... i
Abstract....................................... iii
誌謝........................................... v
目錄........................................... vi
表目錄......................................... ix
圖目錄.......................................... x
第一章 緒論..................................... 1
1.1 前言....................................... 1
1.2文獻回顧..................................... 2
1.2.1嘉磷塞(Glyphosate, 嘉磷塞)介紹:............ 2
1.2.2固殺草(Glufosinate)介紹:.................. 6
1.2.3嘉磷塞(Glyphosate)與固殺草(Glufosinate)之歷年分析方法............................................. 8
1.3 液相層析串聯式質譜儀(LC-MS/MS).............. 14
1.3.1電灑游離法(ESI)............................ 14
1.4研究動機..................................... 16
第二章 材料與方法............................... 17
2.1 藥品及實驗材料.............................. 17
2.1.1 標準品................................... 17
2.1.2 試劑與材料................................ 17
2.1.3 環境樣品來源.............................. 17
2.2 儀器設備及器材.............................. 18
2.3 標準品與內部標準品儲備溶液配製............... 19
2.4標準品直接分析............................... 21
2.5層析條件測試................................. 21
2.6標準品化學衍生法............................. 21
2.7河川水樣品前處理方法.......................... 22
2.7.1衍生化反應之測試........................... 22
2.7.2固相萃取匣(Solid Phase Extraction, SPE)破出(Breakthough)之測試............................. 22
2.7.3固相萃取匣(SPE)沖提體積之測試............... 23
2.8 液相層析串聯質譜方法......................... 23
2.8.1最終液相層析條件........................... 23
2.8.2質譜參數設定............................... 24
2.9 河川水方法性能測試.......................... 24
2.9.1線性與偵測極限............................. 24
2.9.2準確度與精密度測試.......................... 25
2.9.3不同來源基質效應測試........................ 25
2.10底泥樣品前處理方法........................... 25
2.10.1萃取試劑最佳化之測試....................... 25
2.10.2衍生化反應之測試.......................... 26
2.11 液相層析串聯質譜方法........................ 27
2.11.1最終液相層析條件.......................... 27
2.12 底泥方法性能測試........................... 27
2.12.1線性與偵測極限............................ 27
2.12.2準確度與精密度測試......................... 28
2.12.3不同來源基質效應測試....................... 28
2.13 真實樣品分析............................... 28
2.13.1河川水樣品分析............................ 28
2.13.2底泥樣品分析.............................. 29
第三章 結果與討論............................... 30
3.1標準品之測試................................. 30
3.1.1未衍生化標準品之質譜分析.................... 30
3.1.2未衍生化標準品之LC-MS/MS分析................ 30
3.2標準品之化學衍生法............................ 31
3.2.1衍生化標準品之質譜分析...................... 31
3.2.2衍生化標準品之LC-MS/MS分析.................. 32
3.3 河川水前處理方法之最佳化..................... 33
3.3.1衍生化反應時間之測試........................ 33
3.3.2去除試劑溶劑............................... 33
3.3.3固相萃取匣破出(breakthough)之測試........... 34
3.3.4沖提體積之測試............................. 34
3.4 河川水方法性能測試........................... 34
3.4.1線性範圍與方法偵測極限...................... 34
3.4.2精密度與準確度............................. 35
3.4.3不同來源的基質效應測試...................... 35
3.5底泥前處理方法之最佳化........................ 36
3.5.1萃取試劑最佳化之測試........................ 36
3.5.2衍生化反應時間之測試........................ 36
3.8 底泥分析方法性能測試......................... 37
3.8.1線性範圍與方法偵測極限...................... 37
3.8.2精密度與準確度............................. 37
3.8.3不同來源的基質效應測試...................... 38
3.9真實樣品分析................................ 38
3.9.1河川水樣品分析............................. 38
3.9.2底泥樣品分析............................... 40
第四章 結論..................................... 42
參考文獻........................................ 128
Extended Abstract.............................. 139
簡歷(CV)....................................... 152
1.蔣永正, 除草劑毒性及環境安全性. 中華民國雜草會刊, 2011(32): p. 117-131.
2.方麗萍, 非選擇性除草劑在台灣深耕半世紀. 中華民國雜草學會會刊, 2015. 36: p. 77-92.
3.方麗萍, 非選擇性除草劑在臺灣一甲子. 中華民國雜草期刊, 2017(38): p. 63-75.
4.蔣永正和蔣慕琰, 除草劑分類與其特性. 農業藥物毒物試驗所公害防治組, 2006.
5.AGENTS CLASSIFIED BY THE IARC MONOGRAPHS. 27.10.2017.
6.IARC, Monographs evaluation of five organophosphate insecticides and herbicides. 20.03.2015. 112.
7.The WHO Recommended Classification of Pesticidesby Hazard and Guidelines to Classification 2009.
8.Franz, J.E.M., M.K. & Sikorski, J.A., Glyphosate : a unique global herbicide. 1997: Washington, DC : American Chemical Society, c1997.
9.Dill GM, et al., Glyphosate: discovery, development, applications, and properties. Chapter 1. In: Nandula VK (ed) Glyphosate resistance in crops and weeds history, development, and management. 2010, Hoboken, NJ, USA.
10.Duke, S.O. and S.B. Powles, Glyphosate: a once-in-a-century herbicide. Pest Management Science, 2008. 64(4): p. 319-325.
11.Marriage, P.B. and S.U. Khan, Differential Varietal Tolerance of Peach (Prunus persica) Seedlings to Glyphosate. Weed Science, 1978. 26(4): p. 374-378.
12.Segura, J., S.W. Bingham, and C.L. Foy, Phytotoxicity of Glyphosate to Italian Ryegrass (Lolium multiflorum) and Red Clover (Trifolium pratense). Weed Science, 1978. 26(1): p. 32-36.
13.Abu-Irmaileh, B.E. and L.S. Jordan, Some Aspects of Glyphosate Action in Purple Nutsedge (Cyperus rotundus). Weed Science, 1978. 26(6): p. 700-703.
14.Fernandez, C.H. and D.E. Bayer, Penetration, Translocation, and Toxicity of Glyphosate in Bermudagrass (Cynodon dactylon). Weed Science, 1977. 25(5): p. 396-400.
15.羅致逑, 除草劑嘉磷塞之製劑研究. 藥試所專題報導, 1992. 1-8(24).
16.Siehl, D.L., Inhibitors of EPSP synthase, glutamine synthetase and histidine synthesis. Herbicide Activity: Toxicology, Biochemistry and Molecular Biology, 1997. 37-67.
17.Duke SO, B., S Rimando A.M., Glyphosate. Encyclopedia of agrochemicals. 2003a, J.R. Plimmer, D.W. Gammon, N.N. Ragsdale, eds., Wiley, New York.
18.Schulz, A., A. Krüper, and N. Amrhein, Differential sensitivity of bacterial 5-enolpyruvylshikimate-3-phosphate synthases to the herbicide glyphosate. FEMS Microbiology Letters, 1985. 28(3): p. 297-301.
19.Helander, M., I. Saloniemi, and K. Saikkonen, Glyphosate in northern ecosystems. Trends Plant Sci, 2012. 17(10): p. 569-74.
20.Kitchen, L.M., W.W. Witt, and C.E. Rieck, Inhibition of Chlorophyll Accumulation by Glyphosate. Weed Science, 1981. 29(4): p. 513-516.
21.Tomlin, C.D.S., The e-Pesticide Manual. British Crop Protection Council. 2000, Brighton, UK.
22.Grossbard E, A.D., The herbicide glyphosate. 1985, Butterworths, London, England.
23.Szekacs, A. and B. Darvas, Forty Years with Glyphosate. 2012.
24.Dean, E.R., et al., Surfactant Effects on Glyphosate Efficacy. Weed Technology, 1995. 9(2): p. 281-285.
25.Dill, G.M., Glyphosate-resistant crops: history, status and future. Pest Manag Sci, 2005. 61(3): p. 219-24.
26.S. R. Padgette , K.H.K., X. Delannay, D. B. Re, B. J. LaVallee, C. N. Tinius, W. K. Rhodes, Y. I. Otero, G. F. Barry, D. A. Eichholtz, V. M. Peschke, D. L. Nida, N. B. Taylor and G. M. Kishore, Development, Identification, and Characterization of a Glyphosate-Tolerant Soybean Line. Crop science 1995. 35: p. 1451-1461.
27.Comai, L., et al., Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. 1985. v. 317.
28.Barry, G.T.A.G., Monsanto Company, St. Louis, MO.), et al., Inhibitors of amino acid biosynthesis: strategies for imparting glyphosate tolerance to crop plants. 1992. v. 7.
29.Siehl, D.L., et al., Evolution of a microbial acetyltransferase for modification of glyphosate: a novel tolerance strategy. Pest Manag Sci, 2005. 61(3): p. 235-40.
30.袁秋英和蔣慕琰, 抗嘉磷塞作物之發展及其抗藥性機制. 中華民國雜草學會會刊, 2007. 28: p. 196-210.
31.Pengue, M.A.a.W., GM soybean: Latin America’s new colonizer. Seeding, 2006: p. 13-17.
32.Benbrook, C.M., Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur, 2016. 28(1): p. 3.
33.Woodburn, A.T., Glyphosate: production, pricing and use worldwide. Pest management science, 2000. v. 56(no. 4): p. pp. 309-312-2000 v.56 no.4.
34.Tanney, J.B. and L.J. Hutchison, The effects of glyphosate on the in vitro linear growth of selected microfungi from a boreal forest soil. Canadian Journal of Microbiology, 2010. 56(2): p. 138-144.
35.Cuhra, M., T. B?hn, and P. Cuhra, Glyphosate: Too Much of a Good Thing? Frontiers in Environmental Science, 2016. 4(28).
36.Owen, M.D. and I.A. Zelaya, Herbicide-resistant crops and weed resistance to herbicides. Pest Manag Sci, 2005. 61(3): p. 301-11.
37.Powles, S.B., Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manag Sci, 2008. 64(4): p. 360-5.
38.袁秋英, 嘉磷塞(glyphosata)抗藥性-(1) 耐及抗嘉磷塞雜草之發生. 藥毒所技術專刊第210號.
39.Laitinen, P., S. Rämö, and K. Siimes, Glyphosate translocation from plants to soil – does this constitute a significant proportion of residues in soil? Plant and Soil, 2007. 300(1): p. 51-60.
40.Insam, H., Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil Biology and Biochemistry, 1990. 22(4): p. 525-532.
41.Borggaard, O.K. and A.L. Gimsing, Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag Sci, 2008. 64(4): p. 441-56.
42.Mamy, L., E. Barriuso, and B. Gabrielle, Environmental fate of herbicides trifluralin, metazachlor, metamitron and sulcotrione compared with that of glyphosate, a substitute broad spectrum herbicide for different glyphosate-resistant crops. Pest Manag Sci, 2005. 61(9): p. 905-16.
43.Bai, S.H. and S.M. Ogbourne, Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination. Environ Sci Pollut Res Int, 2016. 23(19): p. 18988-9001.
44.Skark, C., et al., The Occurrence of Glyphosate in Surface Water. International Journal of Environmental Analytical Chemistry, 1998. 70(1-4): p. 93-104.
45.Daouk, S., L.F. De Alencastro, and H.-R. Pfeifer, The herbicide glyphosate and its metabolite AMPA in the Lavaux vineyard area, western Switzerland: Proof of widespread export to surface waters. Part II: The role of infiltration and surface runoff. Journal of Environmental Science and Health, Part B, 2013. 48(9): p. 725-736.
46.Cerdeira, A.L. and S.O. Duke, The Current Status and Environmental Impacts of Glyphosate-Resistant Crops. Journal of Environmental Quality, 2006. 35(5): p. 1633-1658.
47.Coupe, R.H., et al., Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Manag Sci, 2012. 68(1): p. 16-30.
48.Yaniria Sanchez-De Leon, E.D.M., Gabriela Soto, Jodi Johnson-Maynard, and Javier Lugo-Perez, Earthworm Populations, Microbial Biomass and Coffee Production in Different Experimental Agroforestry Management Systems in Costa Rica. Caribbean Journal of Science, 2006. 42: p. 397-409.
49.García-Pérez, J.A., et al., Earthworm communities and soil properties in shaded coffee plantations with and without application of glyphosate. Applied Soil Ecology, 2014. 83(Supplement C): p. 230-237.
50.Casabé, N., et al., Ecotoxicological assessment of the effects of glyphosate and chlorpyrifos in an Argentine soya field. Journal of Soils and Sediments, 2007. 7(4): p. 232-239.
51.Pereira, J.L., et al., Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient. Ecotoxicology, 2009. 18(4): p. 455-463.
52.Zhou, C.-F., et al., Does glyphosate impact on Cu uptake by, and toxicity to, the earthworm Eisenia fetida? Ecotoxicology, 2012. 21(8): p. 2297-2305.
53.Fusilero, M.A., et al., Weed management systems and other factors affecting the earthworm population in a banana plantation. European Journal of Soil Biology, 2013. 56(Supplement C): p. 89-94.
54.Kremer, R.J. and N.E. Means, Glyphosate and glyphosate-resistant crop interactions with rhizosphere microorganisms. European Journal of Agronomy, 2009. 31(3): p. 153-161.
55.Zobiole, L.H., et al., Glyphosate affects micro-organisms in rhizospheres of glyphosate-resistant soybeans. J Appl Microbiol, 2011. 110(1): p. 118-27.
56.Ronco, M.G., et al., Glyphosate and mycorrhization induce changes in plant growth and in root morphology and architecture in pepper plants (Capsicum annuum L.). The Journal of Horticultural Science and Biotechnology, 2008. 83(4): p. 497-505.
57.Aristilde, L., et al., Glyphosate-Induced Specific and Widespread Perturbations in the Metabolome of Soil Pseudomonas Species. Frontiers in Environmental Science, 2017. 5.
58.Annett, R., H.R. Habibi, and A. Hontela, Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J Appl Toxicol, 2014. 34(5): p. 458-79.
59.Braz-Mota, S., et al., Roundup® exposure promotes gills and liver impairments, DNA damage and inhibition of brain cholinergic activity in the Amazon teleost fish Colossoma macropomum. Chemosphere, 2015. 135(Supplement C): p. 53-60.
60.King, J.J. and R.S. Wagner, Toxic Effects of the Herbicide Roundup® Regular on Pacific Northwestern Amphibians. Northwestern Naturalist, 2010. 91(3): p. 318-324.
61.Relyea, R.A., The Impact of Insecticides and Herbicides on the Biodiversity and Productivity of Aquatic Communities. Ecological Applications, 2005. 15(2): p. 618-627.
62.Relyea, R.A., The Lethal Impact OF Roundup on Aquatic and Terrestrial Amphibians Ecological Applications,, 2005. 15: p. 1118-1124.
63.Evans, S.C., E.M. Shaw, and A.L. Rypstra, Exposure to a glyphosate-based herbicide affects agrobiont predatory arthropod behaviour and long-term survival. Ecotoxicology, 2010. 19(7): p. 1249-1257.
64.Vera, M.S., et al., New evidences of Roundup® (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems. Ecotoxicology, 2010. 19(4): p. 710-721.
65.Forlani, G., et al., Biochemical Bases for a Widespread Tolerance of Cyanobacteria to the Phosphonate Herbicide Glyphosate. Plant and Cell Physiology, 2008. 49(3): p. 443-456.
66.Levine, S.L., et al., Aminomethylphosphonic acid has low chronic toxicity to Daphnia magna and Pimephales promelas. Environ Toxicol Chem, 2015. 34(6): p. 1382-9.
67.Struger, J., et al., Occurrence of Glyphosate in Surface Waters of Southern Ontario. Bulletin of Environmental Contamination and Toxicology, 2008. 80(4): p. 378-384.
68.Solomon, K. and D. Thompson, Ecological Risk Assessment for Aquatic Organisms from Over-Water Uses of Glyphosate. Journal of Toxicology and Environmental Health, Part B, 2003. 6(3): p. 289-324.
69.Koller, V.J., et al., Cytotoxic and DNA-damaging properties of glyphosate and Roundup in human-derived buccal epithelial cells. Archives of Toxicology, 2012. 86(5): p. 805-813.
70.Romano, M.A., et al., Glyphosate impairs male offspring reproductive development by disrupting gonadotropin expression. Archives of Toxicology, 2012. 86(4): p. 663-673.
71.Thongprakaisang, S., et al., Glyphosate induces human breast cancer cells growth via estrogen receptors. Food and Chemical Toxicology, 2013. 59(Supplement C): p. 129-136.
72.George, J., et al., Studies on glyphosate-induced carcinogenicity in mouse skin: A proteomic approach. Journal of Proteomics, 2010. 73(5): p. 951-964.
73.Benachour, N. and G.-E. Séralini, Glyphosate Formulations Induce Apoptosis and Necrosis in Human Umbilical, Embryonic, and Placental Cells. Chemical Research in Toxicology, 2009. 22(1): p. 97-105.
74.Gasnier, C., et al., Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology, 2009. 262(3): p. 184-191.
75.Mesnage, R., et al., Transcriptome profile analysis reflects rat liver and kidney damage following chronic ultra-low dose Roundup exposure. Environ Health, 2015. 14: p. 70.
76.De Roos, A.J., et al., Integrative assessment of multiple pesticides as risk factors for non-Hodgkin’s lymphoma among men. Occupational and Environmental Medicine, 2003. 60(9): p. e11.
77.Eriksson, M., et al., Pesticide exposure as risk factor for non-Hodgkin lymphoma including histopathological subgroup analysis. Int J Cancer, 2008. 123(7): p. 1657-63.
78.EPA Reportable Quantity Methodology Used to Establish Toxicity/Environmental Scores for the Substance Priority List Agency for Toxic Substances and Disease Registry (ATSDR).
79.Tush, D., K.A. Loftin, and M.T. Meyer, Characterization of polyoxyethylene tallow amine surfactants in technical mixtures and glyphosate formulations using ultra-high performance liquid chromatography and triple quadrupole mass spectrometry. J Chromatogr A, 2013. 1319: p. 80-7.
80.Tush, D. and M.T. Meyer, Polyoxyethylene Tallow Amine, a Glyphosate Formulation Adjuvant: Soil Adsorption Characteristics, Degradation Profile, and Occurrence on Selected Soils from Agricultural Fields in Iowa, Illinois, Indiana, Kansas, Mississippi, and Missouri. Environ Sci Technol, 2016. 50(11): p. 5781-9.
81.Folmar, L.C., H.O. Sanders, and A.M. Julin, Toxicity of the herbicide glyphosate and several of its formulations to fish and aquatic invertebrates. Archives of Environmental Contamination and Toxicology, 1979. 8(3): p. 269-278.
82.Brausch, J.M., B. Beall, and P.N. Smith, Acute and Sub-Lethal Toxicity of Three POEA Surfactant Formulations to Daphnia magna. Bulletin of Environmental Contamination and Toxicology, 2007. 78(6): p. 510-514.
83.Soares, A., et al., Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters. Environment International, 2008. 34(7): p. 1033-1049.
84.Oliver-Rodríguez, B., et al., Evaluation of Linear Alkylbenzene Sulfonate (LAS) behaviour in agricultural soil through laboratory continuous studies. Chemosphere, 2015. 131(Supplement C): p. 1-8.
85.Rice, C.P., et al., Alkylphenol and Alkylphenol-Ethoxylates in Carp, Water, and Sediment from the Cuyahoga River, Ohio. Environmental Science & Technology, 2003. 37(17): p. 3747-3754.
86.Chen, J. and C.A. Mullin, Quantitative Determination of Trisiloxane Surfactants in Beehive Environments Based on Liquid Chromatography Coupled to Mass Spectrometry. Environmental Science & Technology, 2013. 47(16): p. 9317-9323.
87.S?rensen, F.W. and M. Gregersen, Rapid lethal intoxication caused by the herbicide glyphosate-trimesium (Touchdown). Human & Experimental Toxicology, 1999. 18(12): p. 735-737.
88.Mortensen, O., et al., Poisonings with the herbicides glyphosate and glyphosate-trimesium. Ugeskr. Laeg., 2000. 162(35): p. 4656-9.
89.The Health and Consumer Protection Directorate General of the European Commission accessed November 2007.
90.Piriyapittaya, M., et al., Micro-scale membrane extraction of glyphosate and aminomethylphosphonic acid in water followed by high-performance liquid chromatography and post-column derivatization with fluorescence detector. J Chromatogr A, 2008. 1189(1-2): p. 483-92.
91.Watts., D.M., Glufosinate-Ammonium Monograpph. Pesticide Action Network Asia and the Pacific 2008.
92.Elm, et al., Photosynthetic Inhibition and Ammonium Accumulation in Palmer Amaranth after Glufosinate Application. Weed Science, 2001. 49(4): p. 454-459.
93.Beriault, J.N., G.P. Horsman, and M.D. Devine, Phloem Transport of D,L-Glufosinate and Acetyl-L-Glufosinate in Glufosinate-Resistant and -Susceptible Brassica napus. Plant Physiology, 1999. 121(2): p. 619.
94.Nolte, S.A., et al., Glufosinate Absorption, Translocation, and Metabolic Fingerprint Effects in gdhA-Transformed Tobacco. Crop Science, 2017. 57(1): p. 350.
95.Cao, J., et al., Regeneration of herbicide resistant transgenic rice plants following microprojectile-mediated transformation of suspension culture cells. Plant Cell Reports, 1992. 11(11): p. 586-591.
96.Müller, B.P., et al., Metabolism of the herbicide glufosinate-ammonium in plant cell cultures of transgenic (rhizomania-resistant) and non-transgenic sugarbeet (Beta vulgaris), carrot (Daucus carota), purple foxglove (Digitalis purpurea) and thorn apple (Datura stramonium). Pest Management Science, 2001. 57(1): p. 46-56.
97.Jalaludin, A., et al., Preliminary findings of potentially resistant goosegrass (Eleusine indica) to glufosinate-ammonium in Malaysia. Weed Biology and Management, 2010. 10(4): p. 256-260.
98.Avila-Garcia, W.V. and C. Mallory-Smith, Glyphosate-Resistant Italian Ryegrass (Lolium perenne) Populations also Exhibit Resistance to Glufosinate. Weed Science, 2011. 59(3): p. 305-309.
99.Avila-Garcia, W.V., et al., Target-site mutation associated with glufosinate resistance in Italian ryegrass (Lolium perenne L. ssp. multiflorum). Pest Management Science, 2012. 68(9): p. 1248-1254.
100.Royer, A., et al., Determination of Glufosinate Ammonium and Its Metabolite (AE F064619 and AE F061517) Residues in Water by Gas Chromatography with Tandem Mass Spectrometry after Ion Exchange Cleanup and Derivatization. Journal of Agricultural and Food Chemistry, 2000. 48(11): p. 5184-5189.
101.Lajmanovich, R.C., et al., Induction of micronuclei and nuclear abnormalities in tadpoles of the common toad (Rhinella arenarum) treated with the herbicides Liberty® and glufosinate-ammonium. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2014. 769: p. 7-12.
102.Dewhurst, I., First draft on glufosinate ammonium (addendum). Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group, Rome, 20–29 September 1999. 1999.
103.Schulte-Hermann, R., et al., Analysis of reproductive toxicity and classification of glufosinate-ammonium. Regul Toxicol Pharmacol, 2006. 44(3 Suppl 1): p. S1-76.
104.Qian, H., et al., Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris. Aquatic Toxicology, 2008. 88(4): p. 301-307.
105.Zhang, Q., et al., Effects of glufosinate on the growth of and microcystin production by Microcystis aeruginosa at environmentally relevant concentrations. Sci Total Environ, 2017. 575: p. 513-518.
106.Park, S., et al., Seizures in patients with acute pesticide intoxication, with a focus on glufosinate ammonium. Hum Exp Toxicol, 2017: p. 960327117705427.
107.Maillet, I., et al., Glufosinate aerogenic exposure induces glutamate and IL-1 receptor dependent lung inflammation. Clin Sci (Lond), 2016. 130(21): p. 1939-54.
108.Calas, A.-G., et al., Chronic exposure to glufosinate-ammonium induces spatial memory impairments, hippocampal MRI modifications and glutamine synthetase activation in mice. NeuroToxicology, 2008. 29(4): p. 740-747.
109.Meme, S., et al., MRI Characterization of Structural Mouse Brain Changes in Response to Chronic Exposure to the Glufosinate Ammonium Herbicide. Toxicological Sciences, 2009. 111(2): p. 321-330.
110.Laugeray, A., et al., Pre- and postnatal exposure to low dose glufosinate ammonium induces autism-like phenotypes in mice. Front Behav Neurosci, 2014. 8: p. 390.
111.Hori, Y., et al., Determination of the Herbicide Glyphosate and its Metabolite in Biological Specimens by Gas chromatography-mass Spectrometry. A Case of Poisoning by Roundup® Herbicide. Journal of Analytical Toxicology, 2003. 27(3): p. 162-166.
112.Aris, A. and S. Leblanc, Maternal and fetal exposure to pesticides associated to genetically modified foods in Eastern Townships of Quebec, Canada. Reproductive Toxicology, 2011. 31(4): p. 528-533.
113.Stalikas, C.D. and G.A. Pilidis, Development of a method for the simultaneous determination of phosphoric and amino acid group containing pesticides by gas chromatography with mass-selective detection: Optimization of the derivatization procedure using an experimental design approach. Journal of Chromatography A, 2000. 872(1): p. 215-225.
114.Kudzin, Z.H., et al., Novel approach for the simultaneous analysis of glyphosate and its metabolites. Journal of Chromatography A, 2002. 947(1): p. 129-141.
115.Kudzin, Z.H., et al., Simultaneous analysis of biologically active aminoalkanephosphonic acids. Journal of Chromatography A, 2003. 998(1): p. 183-199.
116.Kataoka, H., et al., Simple and rapid determination of the herbicides glyphosate and glufosinate in river water, soil and carrot samples by gas chromatography with flame photometric detection. Journal of Chromatography A, 1996. 726(1): p. 253-258.
117.Tseng, S.-H., et al., Simultaneous Quantification of Glyphosate, Glufosinate, and Their Major Metabolites in Rice and Soybean Sprouts by Gas Chromatography with Pulsed Flame Photometric Detector. Journal of Agricultural and Food Chemistry, 2004. 52(13): p. 4057-4063.
118.Patsias, J., A. Papadopoulou, and E. Papadopoulou-Mourkidou, Automated trace level determination of glyphosate and aminomethyl phosphonic acid in water by on-line anion-exchange solid-phase extraction followed by cation-exchange liquid chromatography and post-column derivatization. Journal of Chromatography A, 2001. 932(1): p. 83-90.
119.Laitinen, P., et al., Fate of the herbicides glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron in two Finnish arable soils. Pest Management Science, 2006. 62(6): p. 473-491.
120.水中嘉磷塞檢測方法-液相層析儀卅管柱後衍生卅螢光偵測器法. 環署檢字第 1030054467 號公告, 103 年 10 月 15 日.
121.Ibáñez, M., et al., Residue determination of glyphosate, glufosinate and aminomethylphosphonic acid in water and soil samples by liquid chromatography coupled to electrospray tandem mass spectrometry. Journal of Chromatography A, 2005. 1081(2): p. 145-155.
122.Hanke, I., H. Singer, and J. Hollender, Ultratrace-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in natural waters by solid-phase extraction followed by liquid chromatography-tandem mass spectrometry: performance tuning of derivatization, enrichment and detection. Anal Bioanal Chem, 2008. 391(6): p. 2265-76.
123.Kusters, M. and M. Gerhartz, Enrichment and low-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in drinking water after cleanup by cation exchange resin. J Sep Sci, 2010. 33(8): p. 1139-46.
124.Ramirez, C.E., S. Bellmund, and P.R. Gardinali, A simple method for routine monitoring of glyphosate and its main metabolite in surface waters using lyophilization and LC-FLD+MS/MS. Case study: canals with influence on Biscayne National Park. Sci Total Environ, 2014. 496: p. 389-401.
125.Poiger, T., et al., Occurrence of the herbicide glyphosate and its metabolite AMPA in surface waters in Switzerland determined with on-line solid phase extraction LC-MS/MS. Environ Sci Pollut Res Int, 2017. 24(2): p. 1588-1596.
126.Ghanem, A., et al., Glyphosate and AMPA Analysis in Sewage Sludge by LC-ESI-MS/MS after FMOC Derivatization on Strong Anion-Exchange Resin as Solid Support. Analytical Chemistry, 2007. 79(10): p. 3794-3801.
127.Druart, C., et al., Optimization of extraction procedure and chromatographic separation of glyphosate, glufosinate and aminomethylphosphonic acid in soil. Anal Bioanal Chem, 2011. 399(4): p. 1725-32.
128.Botero-Coy, A.M., et al., Improvements in the analytical methodology for the residue determination of the herbicide glyphosate in soils by liquid chromatography coupled to mass spectrometry. J Chromatogr A, 2013. 1292: p. 132-41.
129.Todorovic, G.R., et al., Determination of Glyphosate and AMPA in Three Representative Agricultural Austrian Soils with a HPLC-MS/MS Method. Soil and Sediment Contamination: An International Journal, 2013. 22(3): p. 332-350.
130.Sun, L., et al., Determination of glyphosate in soil/sludge by high performance liquid chromatography. J Chromatogr A, 2017. 1502: p. 8-13.
131.沈振峰 and 何國榮, 液相層析質譜術在藥物分析之應用. 藥物食品分析, 1995. 3(4): p. 243-258.
132.台灣質譜學會, 質譜分析技術原理與應用地-第2.6節電灑法與奈電灑游離法. 2015.
133.Banerjee, S. and S. Mazumdar, Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. Int J Anal Chem, 2012. 2012: p. 282574.
134.Ruiz-Toledo, J., et al., Occurrence of Glyphosate in Water Bodies Derived from Intensive Agriculture in a Tropical Region of Southern Mexico. Bulletin of Environmental Contamination and Toxicology, 2014. 93(3): p. 289-293.
135.Kloepfer, A., J.B. Quintana, and T. Reemtsma, Operational options to reduce matrix effects in liquid chromatography–electrospray ionisation-mass spectrometry analysis of aqueous environmental samples. Journal of Chromatography A, 2005. 1067(1): p. 153-160.
136.Hidalgo, C., et al., Improved coupled-column liquid chromatographic method for the determination of glyphosate and aminomethylphosphonic acid residues in environmental waters. Journal of Chromatography A, 2004. 1035(1): p. 153-157.
137.Veena and P. Kaur, Spectrofluorometric Determination of Glyphosate in Water. Asian Journal of Chemistry, 2017. 29(4): p. 792-796.
138.Aline Ghanem, et al., Glyphosate and AMPA Analysis in Sewage Sludge by LC-ESI-MS/MS after FMOC Derivatization on Strong Anion-Exchange Resin as Solid Support. Analytical Chemistry,, 2007. 79: p. 3794-3801.
139.胡順惟, 陳志魁, and 陳世晞, 萃取技術的回顧. 化學, 2015. 73(1): p. 79-92.
140.Mardiana-Jansar, K. and B.S. Ismail, Residue determination and levels of glyphosate in surface waters, sediments and soils associated with oil palm plantation in Tasik Chini, Pahang, Malaysia. 2014: p. 795-802.
141.Veiga, F., et al., Dynamics of glyphosate and aminomethylphosphonic acid in a forest soil in Galicia, north-west Spain. Science of The Total Environment, 2001. 271(1): p. 135-144.
142.Peruzzo, P.J., A.A. Porta, and A.E. Ronco, Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environmental Pollution, 2008. 156(1): p. 61-66.
143.Helene Horth, I.A., Water Quality and European Policy & Legislatioon, Survey Of Glyphosate and AMPA in Groundwaters and Surfacewater in Europe. 2012.
144.Battaglin, W.A., et al., Glyphosate and Its Degradation Product AMPA Occur Frequently and Widely in U.S. Soils, Surface Water, Groundwater, and Precipitation. JAWRA Journal of the American Water Resources Association, 2014. 50(2): p. 275-290.
145.Silva, V., et al., Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in agricultural topsoils of the European Union. Sci Total Environ, 2017.
146.Transparency Market Research. Glyphosate Industry Analysis, Share, Size, Growth, Trends and Forecast 2013–2019. 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔