(3.238.88.35) 您好!臺灣時間:2021/04/10 19:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳姵文
研究生(外文):Pei-Wen Chen
論文名稱:各種處理方式的氧化鉬電洞選擇性薄膜對網印式單晶矽太陽能電池之光電特性影響研究
論文名稱(外文):Effects of Various Treated Molybdenum Oxide Hole-Selective Films on Photovoltaic Characteristics of Screen-Printed Monocrystalline Silicon Solar Cells
指導教授:鄭錦隆
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電工程系光電與材料科技碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:88
中文關鍵詞:氧化鉬電洞選擇性熱蒸鍍單晶矽太陽能電池處理方式
外文關鍵詞:Molybdenum oxidehole-selectivethermal evaporationmonocrystalline silicon solar cellstreatment methods
相關次數:
  • 被引用被引用:0
  • 點閱點閱:60
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究論文探討經過各種處理方式的氧化鉬電洞選擇性傳輸材料對網印式單晶矽太陽能電池之光電特性影響,採用氧化鉬電洞選擇性材料當作矽基板的鈍化層是基於能帶彎曲的物理機制,只允許電洞傳輸,而不使電子通過接面,因而避免使用雷射開孔製程,導致矽基板產生雷射損傷。
本研究首先探討(1)熱蒸鍍二氧化鉬薄膜前,去除矽基板之原生氧化層處理方法,其處理方法包含以Buffer Oxide Etch及稀氟酸兩種蝕刻液;(2)改變蒸鍍背面銀電極厚度,研究銀電極厚度改變之影響;(3)針對旋塗抗蝕刻阻擋膠次數之正電極包覆性進行探討;(4)以HF/HNO3/DIW之混合藥液平坦化矽基板,分析背面平坦化及糙化效果特性;(5) 分析以三氧化鉬在真空底下或在氮氣氛圍下對熱蒸鍍後的三氧化鉬特性影響;(6)最後改變氧化鉬組成比,研究二氧化鉬與三氧化鉬之差異性。
實驗結果顯示,與BOE藥液相比較,利用稀氟酸去除原生氧化層後,並搭配二氧化鉬厚度為40 nm時可獲得較佳的光電轉換效率提升,其平均增加值(∆η%)為0.56%;改變蒸鍍背面銀電極厚度時,銀電極的厚度500 nm及750 nm之∆η%值,兩者相距不大,因成本考量仍採用銀電極厚度為500 nm之銀背電極;旋塗兩次抗蝕刻阻擋膠後,相對與一次旋塗可獲得較佳的光電轉換效率提升,其∆η%值達0.72%;利用HF/HNO3/DIW之混和藥液進行背面平坦化處理,證實背面平坦化處理無法增加轉換效率;與氮氣環境下相比,在真空環境下,其轉換效率是較佳的;最後在蒸鍍二氧化鉬與三氧化鉬相比,當蒸鍍二氧化鉬厚度30 nm,銀電極500 nm能得到最高其∆η%值達1.67%,其平均開路電壓為0.653 V,平均短路電流為35.3 mA/cm2,平均填充因子為80.1%,最高光電轉換效率為18.7%。
Effects of various treated molybdenum oxide hole-selective films on photovoltaic characteristics of screen-printed monocrystalline silicon solar cells (SPMSSCs) were investigated in this thesis. The molybdenum oxide (MoOx) was proposed as the rear passivation layer of the p-type silicon substrate due to the energy band diagram of Si/MoOx contact. The band bending at the p-type Si/MoOx interface, which allows the holes transport and has the ability to block electrons pass through the interface. Thus, the laser opening local contacts processes can be avoided. Therefore, the laser damage was keep away from the silicon substrate.
First, the native oxides were removed by buffer-oxide-etch (BOE) or dilute HF (DHF) solution prior to thermally evaporated MoO2 films. Then, effects of various thicknesses of sliver electrodes on photovoltaic characteristics of SPMSSCs were achieved. The number of spin-coated polymer to protect silver electrode of the front side was explored. Moreover, the surface morphologies, including textured and flatted surface, were demonstrated by HF/HNO3/DIW mixed solution. Furthermore, the effects of the thermally evaporated MoO3 with nitrogen (N2) gas or vacuum environment on photovoltaic characteristics of SPMSSCs were compared. Finally, the effects of the stoichiometric of the MoOx thin films on photovoltaic characteristics of the SPMSSCs were examined.
The results indicate that the enhanced conversion efficiency (CE) for the samples with the DHF treatment was better than that of the BOE ones. The CEs of the SPMSSCs with 500 and 750 nm silver electrodes were identical. Thus, the silver electrode with 500 nm was used. The achievement of CE improvement of around 0.72% absolute for SPMSSCs with two layers polymer protection was more preferable than that of the samples with one layer polymer protection. The CE improvement of the SPMSSCs with rear textured surface was more advantageous than the samples with flatted surface. The CE improvement of the SPMSSCs with MoO3 under vacuum ambient was more valid than the samples with MoO3 under nitrogen ambient. The CE improvement of the SPMSSCs with MoO2 was more effective than the samples with MoO3. Finally, the SPMSSCs with a CE of 18.7%, an open-circuit voltage of 653 mV, a short-circuit density of 35.3 mA/cm2, and a fill factor of 80.1%, were demonstrated. Compared with the samples with Al pastes as the rear electrode, the achievement of CE improvement of around 1.67% absolute for SPMSSCs with MoO2/Ag stacked film as rear electrode was demonstrated.
摘要....................................................i
Abstract...............................................ii
誌謝..................................................iii
目錄...................................................iv
表目錄.................................................vi
圖目錄................................................vii
第一章 緒論..............................................1
1.1 鈍化射極背接觸式太陽能電池之背面雷射局部開孔導致損傷文獻回顧......................................................1
1.2 具載子選擇性特性之過渡金屬氧化物應用於太陽能電池之回顧...2
1.3 針對不同處理方式之過渡金屬氧化物薄膜應用回顧............4
1.4 研究動機.............................................5
1.5 論文架構.............................................5
第二章 實驗流程與特性量測.................................9
2.1 探討去除原生氧化層處理方法並搭配不同蒸鍍二氧化鉬厚度、改變熱蒸鍍背面銀電極厚度、改變旋塗抗蝕刻阻擋膠次數、背面平坦化及糙化效果對網印式單晶矽太陽能電池之特性研究...................9
2.1.1 對矽基板表面進行微粒清洗...........................10
2.1.2 矽基板前表面利用鹼性蝕刻方式形成金字塔粗糙化(Pyramid-textured).............................................10
2.1.3 藉由高溫擴散爐管進行磷擴散(Phosphorus diffusion)來形成n+射極...............................................10
2.1.4 藉由稀氟酸藥液(DHF)蝕刻去除表面磷矽玻璃(PSG).....11
2.1.5 使用電漿增強型化學氣相沉積系統(Plasma Enhanced Chemical Vapor Deposition, PECVD)沉積氮化矽(SiNx)製作前表面抗反射層............................................11
2.1.6 網印(Screen-printing)銀膠製作正電極..............11
2.1.7 藉由高溫隧道爐進行燒結(Firing)形成銀正電極........12
2.1.8 旋塗抗蝕刻阻擋膠以包覆正電極.......................12
2.1.9 利用酸性蝕刻溶液去除背面原生氧化層..................12
2.1.10 背面熱蒸鍍不同厚度之二氧化鉬薄膜...................13
2.1.11 熱蒸鍍法蒸鍍背面銀電極............................14
2.2 探討不同厚度的三氧化鉬在真空或在氮氣氛圍下之影響對網印式單晶矽太陽能電池之特性研究.................................14
2.2.1 旋塗抗蝕刻阻擋膠包覆正電極.........................14
2.2.2 利用酸性蝕刻溶液去除背面原生氧化層..................15
2.2.3 在真空或在氮氣氛圍下蒸鍍不同厚度的三氧化鉬...........15
2.2.4 熱蒸鍍法蒸鍍背面銀電極.............................15
2.3 改變組成比探討二氧化鉬及三氧化鉬對網印式單晶矽太陽能電池之特性研究................................................16
2.3.1 旋塗抗蝕刻阻擋膠以包覆正電極.......................16
2.3.2 利用酸性蝕刻溶液去除背面原生氧化層..................17
2.3.3 改變組成比蒸鍍二氧化鉬及三氧化鉬薄膜................17
2.3.4 熱蒸鍍法蒸鍍背面銀電極.............................17
2.4光伏元件電性及物性量測................................18
2.4.1 光伏元件之電性量測................................18
2.4.2 光伏元件之物性量測................................18
第三章 各種處理方式的氧化鉬電洞選擇性薄膜對網印式單晶矽太陽能電池之光電特性影響研究...................................32
3.1 探討去除原生氧化層處理方法並搭配不同蒸鍍二氧化鉬厚度、改變熱蒸鍍背面銀電極厚度、改變旋塗抗蝕刻阻擋膠次數、背面平坦化及糙化效果對網印式單晶矽太陽能電池之特性研究..................32
3.1.1 研究動機..........................................32
3.1.2 結果與討論........................................33
3.1.3 結論.............................................36
3.2 探討不同厚度的三氧化鉬在真空或在氮氣氛圍下之影響對網印式單晶矽太陽能電池之特性研究.................................36
3.2.1 研究動機..........................................36
3.2.2 結果與討論........................................36
3.2.3 結論.............................................37
3.3 改變組成比探討二氧化鉬及三氧化鉬對網印式單晶矽太陽能電池之特性研究................................................38
3.3.1 研究動機..........................................38
3.3.2 結果與討論........................................38
3.3.3 結論.............................................39
第四章 總結論與未來展望..................................81
4.1 總結論.............................................81
4.2 未來展望............................................81
參考文獻................................................82
Extended Abstract......................................85
作者簡歷................................................88
[1] M. Kim, D. Kim, D. Kim, Y. Kang, “Analysis of laser-induced damage during laser ablation process using picosecond pulse width laser to fabricate highly efficient PERC cells,” Solar Energy, 108, pp. 101-106, 2014.
[2] K. Mangersnes, S. E. Foss, A. Th?gersen, “Damage free laser ablation of SiO2 for local contact opening on silicon solar cells using an a-Si:H buffer layer,” Applied Physics Letters, 107, pp. 043518, 2010.
[3] M. Kim, D. Kim, D. Kim, Y. Kang, “Impact of laser pulse width on laser ablation process of high performance PERC cells,” Solar Energy, 110, pp. 208–213, 2014.
[4] J. Kim, Y. Hwang, J. Kim, J. Lim, E. Lee, “Investigation of rear side selective laser ablation and damage etching process for industrial PERC solar cells,” Energy Procedia, 55, pp. 791 -796, 2014.
[5] Y. Hwang, C. S Park, J. Kim, J. Kim, J. Y. Lim, H. Choi, J. Jo, E. Lee, “Effect of laser damage etching on i-PERC solar cells,” Renewable Energy, 79, pp. 131-134, 2015.
[6] M. Kim, S. Park, D. Kim, “Highly efficient PERC cells fabricated using the low cost laser ablation process,” Solar Energy Materials & Solar Cells, 117, pp. 126-131, 2013.
[7] L. G. Gerling, S. Mahato, A. M. Vilches, G. Masmitja, P. Ortega, C. Voz, R. Alcubilla, J. Puigdollers, “Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells,” Solar Energy Materials & Solar Cells, 145, pp. 109-115, 2016.
[8] L. G. Gerling, G. Masmitja, C. Voz, P. Ortega, J. Puigdollers, R. Alcubilla, “Back junction n-type silicon heterojunction solar cells with V2O5 hole-selective contact,” Energy Procedia, 92, pp. 633-637, 2016.
[9] S. I. Park, S. J. Baik, J. S Im, L. Fang, J. W Jeon, K. S Lim, “Towards a high efficiency amorphous silicon solar cell using molybdenum oxide as a window layer instead of conventional p-type amorphous silicon carbide,” Applied Physics Letters, 99, pp. 063504, 2011.
[10] M. Mews, L. Korte, B. Rech, “Oxygen vacancies in tungsten oxide and their influence on tungsten oxide/silicon heterojunction solar cells,” Solar Energy Materials & Solar Cells, 158, pp. 77-83, 2016.
[11] R. Islam, G. Shine, K. C. Saraswat, “Schottky barrier height reduction for holes by Fermi level depinning using metal/nickel oxide/silicon contacts,” Applied Physics Letters, 105, pp. 182103, 2014. 
[12] M. Bivour, J. Temmler, H. Steinkemper, M. Hermle, “Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells,” Solar Energy Materials & Solar Cells, 142, pp. 34-41, 2015.
[13] M. Bivoura, B. Maccob, J. Temmlera, W. M. M. (Erwin) Kesselsb, M. Hermlea, “Atomic layer deposited molybdenum oxide for the hole-selective contact of silicon solar cells,” Energy Procedia, 92, pp. 443-449, 2016.
[14] H. D. Um, N. Kim, K. Lee, I. Hwang, J. H. Seo, K. Seo, “Dopant-free all-back-contact si nanohole solar cells using MoOx and LiF films,” Nano Letters, 16, pp. 981-987, 2016.
[15] C. Battaglia, X. Yin, M. Zheng, Ian D. Sharp, T. Chen, S. McDonnell, A. Azcatl, C. Carraro, B. Ma, R. Maboudian, Robert. M. Wallace, A. Javey, “Hole Selective MoOx Contact for Silicon Solar Cells,” Nano Letters, 14, pp. 967-971, 2014.
[16] S. Avasthi, W. E. McClain, G. Man, A. Kahn, J. Schwartz, J. C. Sturm, “Hole-blocking titanium-oxide/silicon heterojunction and its application to photovoltaics,” Applied Physics Letters, 102, pp. 203901, 2013.
[17] J. Jhaveri, S. Avasthi, K. Nagamatsu, J. C. Sturm, “Stable low-recombination n-Si/TiO2 hole-blocking interface and its effect on silicon heterojunction photovoltaics,” IEEE 40th Photovoltaic Specialist Conference, pp. 1525-1528, 2014.
[18] X. Yang, P. Zheng, Q. Bi, K. Weber, “Silicon heterojunction solar cells with electron selective TiOx contact,” Solar Energy Materials & Solar Cells, 150, pp. 32-38, 2016.
[19] S. Avasthil, K. A. Nagamatsu, J. Jhaveril, W. E. Mclainl, G. Manl, A. Kahn, J. Schwartzl, S. Wagner, J. C. Sturm, “Double-heterojunction crystalline silicon solar cell fabricated at 250 °C with 12.9 % efficiency,” IEEE 40th Photovoltaic Specialist Conference, pp. 0949-0952, 2014.
[20] H. Kim, K. L. Ou, X. Wu, P. F. Ndione, J. Berry, Y. Lambert, Thierry. Mélin, N. R. Armstrong, S. Graham, “Investigation of ultra-thin titania films as hole-blocking contacts for organic photovoltaics,” Journal of Materials Chemistry A, 3, pp. 17332-17343, 2015.
[21] K. A. Nagamatsu, S. Avasthi, G. Sahasrabudhe, G. Man, J. Jhaveri, A. H. Berg, J. Schwartz, A. Kahn, S. Wagner, J. C. Sturm, “Titanium dioxide/silicon hole-blocking selective contact to enable double-heterojunction crystalline silicon-based solar cell,” Applied Physics Letters, 106, pp. 123906, 2015.
[22] C. Battaglia, S. M. D. Nicolás, S. D. Wolf, X. Yin, M. Zheng, C. Ballif, A. Javey, “Silicon heterojunction solar cell with passivated hole selective MoOx contact,” Applied Physics Letters, 104, pp. 113902, 2014.
[23] J. Geissbühler, J. Werner, S. M. D. Nicolas, L. Barraud, A. Hessler-Wyser, M. Despeisse, S. Nicolay, A. Tomasi, B. Niesen, S. D. Wolf, C. Ballif, “22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector,” Applied Physics Letters, 107, pp. 081601, 2015. 
[24] G. Oh and E. K. Kim, “Effect of vanadium oxide interfacial layer for electrical contact on p-type silicon,” Current Applied Physics, 16, pp. 1315-1319, 2016.
[25] S. D. Lee, Y. J. Lee, J. J. Rha, W. I. Park, S. H. Kwon, J. D. Kwon, “Effect of ozone pulse time on the properties of the thin-film amorphous-silicon solar cell with atomic-layer-deposited V2O5-x films as the hole-transporting layer,” Current Applied Physics, 16, pp. 245-250, 2016.
[26] C. Imawan, H. Steffes, F. Solzbacher, E. Obermeier, “Structural and gas-sensing properties of V2O5-MoO3 thin films for H2 detection,” Sensors and Actuators B, 77, pp. 346-351, 2001.
[27] T. Ressler, J. Wienold, R. E. Jentoft, “Formation of bronzes during temperature-programmed reduction of MoO3 with hydrogen — an in situ XRD and XAFS study,” Solid State Ionics, 141-142, pp. 243-251, 2001.
[28] M. B. Rahmani, S. H. Keshmiri, J. Yua, A. Z. Sadek, L. Al-Mashat, A. Moafic, K. Latham, Y. X. Li, W. Wlodarski, K. Kalantar-zadeh, “Gas sensing properties of thermally evaporated lamellar MoO3,” Sensors and Actuators B, 145, pp. 13-19, 2010.
[29] A. Ganguly and R. George, “Synthesis, characterization and gas sensitivity of MoO3 nanoparticles,” Bulletin of Materials Science, vol. 30, No. 2, pp. 183-185, 2007.
[30] D. O. Scanlon, G. W. Watson, D. J. Payne, G. R. Atkinson, R. G. Egdell, D. S. L. Law, “Theoretical and experimental study of the electronic structures of MoO3 and MoO2,” The Journal of Physical Chemistry C, 114, pp. 4636-4645, 2010.
[31] M. T. Greiner, “Transition Metal Oxides in Organic Electronics,” Materials Science and Engineering University of Toronto, 2012.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔