(34.239.150.57) 您好!臺灣時間:2021/04/14 22:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周佳穎
研究生(外文):Jia-Ying Chou
論文名稱:封閉式機翼應用在高空長滯空太陽能無人機之氣動力分析
論文名稱(外文):Investigation of Aerodynamic Characteristics of Closed Wing Applied on High-Altitude, Long-Endurance Solar UAV
指導教授:鄭仁杰鄭仁杰引用關係
指導教授(外文):Jen-Chieh Cheng
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:飛機工程系航空與電子科技碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:86
中文關鍵詞:高空長滯空太陽能無人機空氣動力封閉式機翼
外文關鍵詞:HALEsolar UAVaerodynamicclosed wing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:82
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
封閉型機翼之無人飛機具重量輕、高強度、低誘導阻力、穩定性及控制性佳、以及具抵抗強側風、強逆風、亂流等優點,因此成為極具發展潛力的項目。本研究旨在針對高空、長滯空無人飛行器之封閉式機翼外形進行設計,並針對其氣動力性能做分析,並期待在飛行器的外型設計能夠使整體達到最佳化。本文以Ansys Fluent,並使用具SST K-ω紊流模組進行數值模擬,探討封閉型機翼在改變不同垂直距離、水平距離及下翼為後掠式之氣動力特性,並且分析在何種配置下能有較佳的效果。
分析三維封閉式機翼在自由流風速12m/s,發現流體流經封閉型機翼所產生之翼尖渦流明顯小於直翼式機翼(SINGLE WING)。在矩形式封閉型機翼 0≦D/c≦6 及 0.5≦H/c≦2 之結果顯示,當固定D/c時,CL開始時會隨著H/c增加而提升,當H/c增加至1.5時整體CL增加的幅度已趨近飽和。當固定H/c時,CL會隨著D/c增加而提升。在所探討案例中,當D/c=0、1.5、3、6時,最佳整體平均CL¬分別為SINGLE WING的88.4、93%、94.8、101.4%。在後掠式封閉型機翼的部分,整體CL皆隨著D的增加而減少,D/c=0.5時之整體平均CL皆為最佳。在升力與重量比方面,在相同展弦比下,整體BOXWING之L/Waf與L/W皆大於SINGLE WING。在所探討案例中,最大平均L/Waf及L/W 增益值分別為 265%及102%,在相同負載的情況下,因BOXWING所需升力較小,使阻力也較小,使整體動力輸出較低,進而增加續航力;在相同升力的情況下,因BOXWING重量較低,因此可多酬載許多設備,如:電池、太陽能板及其他相關設備。
Closed wing has the advantage including low weight, high stiffness, low induced drag and good stability, and has great potential for development of HALE Solar UAV. This study focuses on reducing the structure weight as well as enhancing stability of maneuverability and environmental tolerance without comprising aerodynamic characteristics. The effects of configuration parameters and installation arrangement of the closed wing designed under different operational conditions have been discussed in detail for the aerodynamic performance. The 3D numerical simulation integrated SST k-ω turbulence module is performed to investigate the aerodynamic characteristics of closed wing in different vertical and horizontal distances of upper and lower wing, and the swept angle of lower wing.
The wing tip vortex influence to closed wing is less than SINGLE WING. For rectangular closed wings with 0≦D/c≦6 and 0.5≦H/c≦2, the CL grows as H/c increases initially and saturate as H/c=1.5 when D/c is fixed. Meanwhile, the CL grows as D/c increases when H/c is fixed. Comparing with the single wing, the average CL are 88.4%, 93%, 94.8% and 101.4% of SINGLE WING as D/c=0、1.5、3、6. For swept closed wings with 0≦D/c≦2, the CL decreases as D/c increases and D/c=0.5 has the best average CL. In the same aspect ratio, both L/Waf and L/W for BOXWING are all better than SINGLE WING. Comparing with the single wing, the maximum enhancement of L/Waf and L/W for BOXINNGWING are about 265% and 102%.
摘要………………………………………………………………………i
Abstract…………………………………………………………………iii
誌謝…………………………………………………………………v
目錄…………………………………………………………………vi
圖目錄…………………………………………………………………viii
符號說明………………………………………………………………xiv
第一章 緒論……………………………………………………………1
1.1 研究動機…………………………………………………………1
1.2 研究目的…………………………………………………………3
1.3 文獻回顧…………………………………………………………3
第二章 研究方法………………………………………………………7
2.1 物理模式…………………………………………………………7
2.2 統御方程式………………………………………………………7
2.3 紊流模型…………………………………………………………8
2.4邊界條件…………………………………………………………10
2.5 重量估算…………………………………………………………10
第三章 數值方法及驗證………………………………………………12
3.1 簡述……………………………………………………………12
3.2網格系統…………………………………………………………12
3.3程式驗證…………………………………………………………13
第四章 結果與討論……………………………………………………14
4.1 矩形式封閉型機翼之數值及流場分析…………………………14
4.1.1 固定上下翼距離D改變上下翼垂直高度H………………14
4.1.2 固定上下翼高度H改變上下翼前後距離D………………18
4.2後掠式封閉型機翼之數值分析…………………………………22
4.2.1固定後掠D改變上下翼垂直高度H…………………………22
4.2.2固定後掠H改變上下翼前後距離D…………………………24
第五章 結論……………………………………………………………28
5.1 矩形式封閉型機翼………………………………………………28
5.2 後掠式封閉型機翼………………………………………………29
參考文獻……………………………………………………………78
Extended Abstract……………………………………………………81
Introduction…………………………………………………………82
Analysis……………………………………………………………83
Numerical method and validation…………………………………83
Results and Discussion………………………………………………84
簡歷……………………………………………………………………86
[1]Spyridon G. Kontogiannis, John A. Ekaterinaris, ” Design, performance evaluation and optimization of a UAV” Aerospace Science and Technology 29 (2013) 339–350
[2]R. Barbosa, B. Escobar, V. M. Sanchez , J. Hernandez, R. Acosta, Y. Verde,” Sizing of a Solar/Hydrogen System for High Altitude Long Endurance Aircrafts”, International Journal of Hydrogen Energy , Vol. 39, 2014, pp.16637-16645.
[3]S. Jashnani, T.R. Nada, M. Ishfaq, A. Khamker, P. Shaholia,” Sizing And Preliminary Hardware Testing of Solar Powered UAV”, The Egyptian Journal of Remote Sensing and Space Sciences, Vol. 16, 2013, pp. 189–198.
[4]X. Zhu, Z. Guo, Z. Hou,” Solar-powered Airplanes: A Historical Perspective and Future Challenges”,Progress in Aerospace Sciences, Vol. 71, 2014, pp.36–53.
[5]O. Montagnier and L. Bovet, “Optimization of a Solar-Powered High Altitude Long Endurance UAV”,.27th International Congress of the Aeronautical Science, 19-24 Sep., 2010, Nice, France.
[6]Shiau, Jaw-Kuen, Ma, Der-Ming, Chiu, Chih-Wei, Shie, Jie-Ren, “ Optimal Sizing and Cruise Speed Determination for a Solar Powered Airplane”. Journal of Aircraft, Vol. 47, No. 2, 2010, pp. 622–629.
[7]Greer, D. Krake, K., and Drela, M., “Design and Predictions for a High-Altitude (Low-Reynolds Number) Aerodynamic Flight Experiment”, NASA/TM-1999-206579.
[8]Maughmer, M. D. and Somers, D. M., “Design and Experimental Results for a High-Altitude,Long-Endurance Airfoil”, Journal of Aircraft, Vol. 26, No. 2, pp.148-153, 1989.
[9].Maughmer, M. D. and Somers, D. M., “Figures of Merit for Airfoil/Aircraft Design Integration”,AIAA-88-4416, 1988.
[10]I.M. Kroo, “Non-planar wing concept for increased aircraft efficiency”, VKI Lecture, Stanford University, U.S.A., 2005.
[11]Paul O Jemitola, John P Fielding, “Box Wing Aircraft Conceptual Design”, Department of Aerospace Engineering, Cranfield University, 2012 
[12]J. Wolkovitch. "The joined wing - An overview", Journal of Aircraft, Vol. 23, No. 3 (1986), pp. 161-178. 
[13]Ishan Roy Salam, Cees Bil. "Preliminary Aerodynamic and Structural Design Tradeoff for a Box-Wing Airliner", 50th AIAA
[14]Soujanya Marisarla, Vijay Narayanan, Urmila Ghia, Karman Ghia,” PREDICTION OF STRUCTURAL BEHAVIOR OF JOINED-WING CONFIGURATION OF HIGH-ALTITUDE LONG-ENDURANCE (HALE) AIRCRAFT” 41st Aerospace Sciences Meeting and Exhibit 6-9 January 2003, Reno, Nevada AIAA 2003-625   
[15]M. F. Samuels, “Structural weight comparison of a joined wing and a conventional wing”, Journal of Aircraft, Vol. 19, 1982, pp. 485-491.
[16]Ilan Kroo and John Gallmant” Aerodynamic and Structural Studies of Joined-Wing Aircraft” Journal of Aircraft, VOL. 28, NO. 1 pp.74-81,1991
[17]ANSYS, FLUENT 13.0 User’s Guide, ANSYS Inc, 2010.
[18]F. R. Menter, "Two-equation eddy-viscosity turbulence models for engineering applications", AIAA Journal, Vol. 32, pp. 1598-1605, 1994. 2-4紊流模型@@
[19]H. Tennekes. The Simple Science of Flight – From Insects to Jumbo Jets. MIT Press, Cambridge,Massachusetts, USA, 1992.
[20]A. Noth, R. Siegwart, W. Engel, “Design of Solar Powered Airplanes for Continuous Flight”, given in the framework of the ETHZ lecture,“Aircraft and Spacecraft Systems: Design, Modeling and Control”, December 2006.
[21].Christopher J. Hartney”Design of a small solar-powered unmanned aerial vehicle”The Faculty of the Department of Mechanical and Aerospace Engineering San Jode State University, August 2011
[22]J. P. Van Doormaal and G. D. Raithby, "Enhancements of the SIMPLE method for predicting incompressible fluid flows", Numerical Heat Transfer, Vol. 7, pp. 147-163, 1984.
[23]S. V. Patankar, "Numerical Heat Transfer and Fluid Flow", McGraw-Hill, New York, 1980.
[24]J.H.Chen, S.S.Li, V.T.Nguyen, "The effect of leading-edge protuberances on the performance of small aspect ratio foils", 15th International Symposium on Flow Visualization June 25-28, 2012, Minsk, Belarus.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔